Last updated: 2023-12-06

Checks: 7 0

Knit directory: bgc_argo_r_argodata/

This reproducible R Markdown analysis was created with workflowr (version 1.7.0). The Checks tab describes the reproducibility checks that were applied when the results were created. The Past versions tab lists the development history.


Great! Since the R Markdown file has been committed to the Git repository, you know the exact version of the code that produced these results.

Great job! The global environment was empty. Objects defined in the global environment can affect the analysis in your R Markdown file in unknown ways. For reproduciblity it’s best to always run the code in an empty environment.

The command set.seed(20211008) was run prior to running the code in the R Markdown file. Setting a seed ensures that any results that rely on randomness, e.g. subsampling or permutations, are reproducible.

Great job! Recording the operating system, R version, and package versions is critical for reproducibility.

Nice! There were no cached chunks for this analysis, so you can be confident that you successfully produced the results during this run.

Great job! Using relative paths to the files within your workflowr project makes it easier to run your code on other machines.

Great! You are using Git for version control. Tracking code development and connecting the code version to the results is critical for reproducibility.

The results in this page were generated with repository version 83269d5. See the Past versions tab to see a history of the changes made to the R Markdown and HTML files.

Note that you need to be careful to ensure that all relevant files for the analysis have been committed to Git prior to generating the results (you can use wflow_publish or wflow_git_commit). workflowr only checks the R Markdown file, but you know if there are other scripts or data files that it depends on. Below is the status of the Git repository when the results were generated:


Ignored files:
    Ignored:    .Rhistory
    Ignored:    .Rproj.user/
    Ignored:    output/

Note that any generated files, e.g. HTML, png, CSS, etc., are not included in this status report because it is ok for generated content to have uncommitted changes.


These are the previous versions of the repository in which changes were made to the R Markdown (analysis/coverage_timeseries.Rmd) and HTML (docs/coverage_timeseries.html) files. If you’ve configured a remote Git repository (see ?wflow_git_remote), click on the hyperlinks in the table below to view the files as they were in that past version.

File Version Author Date Message
Rmd 83269d5 ds2n19 2023-12-06 changes to extreme temp
html 80c16c2 ds2n19 2023-11-15 Build site.
html 93b4545 ds2n19 2023-10-18 Build site.
html c16000b ds2n19 2023-10-12 Build site.
html 770b125 ds2n19 2023-10-11 Build site.
html 13ae27f ds2n19 2023-10-09 Build site.
Rmd fc05391 ds2n19 2023-10-09 Changed core Argo location folders and run for 2013, 2014 and 2022
html c7759a2 ds2n19 2023-10-04 Build site.
Rmd 6ad3f88 ds2n19 2023-10-04 update with 2023 data
html 90ff007 ds2n19 2023-10-02 Build site.
html 1e972c5 ds2n19 2023-10-02 Build site.
html 7b3d8c5 pasqualina-vonlanthendinenna 2022-08-29 Build site.
Rmd 8e81570 pasqualina-vonlanthendinenna 2022-08-29 load and add in core-argo data (1 month)
html bdd516d pasqualina-vonlanthendinenna 2022-05-23 Build site.
html 4173c20 jens-daniel-mueller 2022-05-12 Build site.
html dfe89d7 jens-daniel-mueller 2022-05-12 Build site.
html 710edd4 jens-daniel-mueller 2022-05-11 Build site.
Rmd 2f20a76 jens-daniel-mueller 2022-05-11 rebuild all after subsetting AB profiles and code cleaning
html 68eff8b jens-daniel-mueller 2022-05-11 Build site.
Rmd cf4d1b6 jens-daniel-mueller 2022-05-11 rerun with flag A and B subset
html 6531981 pasqualina-vonlanthendinenna 2022-05-10 Build site.
Rmd bbafe7c pasqualina-vonlanthendinenna 2022-05-10 updated profile counts timeseries
html f196b7c pasqualina-vonlanthendinenna 2022-05-09 Build site.
Rmd a66f31c pasqualina-vonlanthendinenna 2022-05-09 updated argo index
html 3f012ba pasqualina-vonlanthendinenna 2022-05-06 Build site.
Rmd 90d5e7c pasqualina-vonlanthendinenna 2022-05-06 added timeseries of flag A dataframe
html 6a6e874 pasqualina-vonlanthendinenna 2022-04-29 Build site.
html 2d44f8a pasqualina-vonlanthendinenna 2022-04-29 Build site.
html e61c08e pasqualina-vonlanthendinenna 2022-04-27 Build site.
html 10036ed pasqualina-vonlanthendinenna 2022-04-26 Build site.
html c03dd24 pasqualina-vonlanthendinenna 2022-04-20 Build site.
html 8805f99 pasqualina-vonlanthendinenna 2022-04-11 Build site.
html 905d82f pasqualina-vonlanthendinenna 2022-02-15 Build site.
html b8a6482 pasqualina-vonlanthendinenna 2022-01-03 Build site.
html 7f3cfe7 pasqualina-vonlanthendinenna 2021-12-17 Build site.
Rmd c4cce1a pasqualina-vonlanthendinenna 2021-12-17 updated cache data
html 123e5db pasqualina-vonlanthendinenna 2021-12-07 Build site.
Rmd f8abe59 pasqualina-vonlanthendinenna 2021-12-07 suppressed output messages and updated plots
html 930ea26 pasqualina-vonlanthendinenna 2021-11-26 Build site.
html e09c60b pasqualina-vonlanthendinenna 2021-11-26 Build site.
html 1305d6b pasqualina-vonlanthendinenna 2021-11-26 Build site.
html 5e2b8a5 pasqualina-vonlanthendinenna 2021-11-26 Build site.
html 3df4daf pasqualina-vonlanthendinenna 2021-11-26 Build site.
html 7a01367 pasqualina-vonlanthendinenna 2021-11-12 Build site.
html 284003d pasqualina-vonlanthendinenna 2021-11-11 Build site.
html 6276d6c pasqualina-vonlanthendinenna 2021-11-11 Build site.
html 358d54e pasqualina-vonlanthendinenna 2021-11-05 Build site.
Rmd 395f3ec pasqualina-vonlanthendinenna 2021-11-05 added total profile count
html a103f60 pasqualina-vonlanthendinenna 2021-11-05 Build site.
Rmd 31576f9 pasqualina-vonlanthendinenna 2021-11-05 changed QC flag maps
html fbd5bac pasqualina-vonlanthendinenna 2021-11-04 Build site.
html 68977a1 pasqualina-vonlanthendinenna 2021-10-26 Build site.
Rmd 062b272 pasqualina-vonlanthendinenna 2021-10-26 added ggsave
html b57291a pasqualina-vonlanthendinenna 2021-10-26 Build site.
html bba33bf pasqualina-vonlanthendinenna 2021-10-26 Build site.
Rmd 4bc1859 pasqualina-vonlanthendinenna 2021-10-26 run with full data
html cabaa10 jens-daniel-mueller 2021-10-22 Build site.
Rmd e2a1f9e jens-daniel-mueller 2021-10-22 code revision
html f7ef44f jens-daniel-mueller 2021-10-22 Build site.
Rmd ee2b3f3 jens-daniel-mueller 2021-10-22 code revision
html aa7280d jens-daniel-mueller 2021-10-22 Build site.
Rmd ca7ba6b jens-daniel-mueller 2021-10-22 adding revised code
html d84c904 pasqualina-vonlanthendinenna 2021-10-22 Build site.
html 8ecdb43 pasqualina-vonlanthendinenna 2021-10-22 Build site.
Rmd 2b22099 pasqualina-vonlanthendinenna 2021-10-22 edited text
html c81f21c pasqualina-vonlanthendinenna 2021-10-21 Build site.
html b55928d pasqualina-vonlanthendinenna 2021-10-21 Build site.
Rmd 58c24b6 pasqualina-vonlanthendinenna 2021-10-21 timeseries attempt 2, added description
html 62d8519 pasqualina-vonlanthendinenna 2021-10-20 Build site.
html b8feac2 pasqualina-vonlanthendinenna 2021-10-20 Build site.
Rmd b7b1806 pasqualina-vonlanthendinenna 2021-10-20 adding revised code
html 701fffa pasqualina-vonlanthendinenna 2021-10-20 Build site.
Rmd b88a839 pasqualina-vonlanthendinenna 2021-10-20 adding revised code

Task

Count the number of bgc-argo profiles, and plot their evolution over time.

Load data

BGC-Argo data

Read the files created in loading_data.html:

bgc_temp <- read_rds(file = paste0(path_argo_preprocessed, "/temp_bgc_va.rds")) %>%
  filter(!is.na(year))

bgc_ph <- read_rds(file = paste0(path_argo_preprocessed, "/pH_bgc_va.rds")) %>%
  filter(!is.na(year))

bgc_doxy <- read_rds(file = paste0(path_argo_preprocessed, "/doxy_bgc_va.rds")) %>%
  filter(!is.na(year))

bgc_nitrate <- read_rds(file = paste0(path_argo_preprocessed, "/nitrate_bgc_va.rds")) %>%
  filter(!is.na(year))

bgc_chla <- read_rds(file = paste0(path_argo_preprocessed, "/chla_bgc_va.rds")) %>%
  filter(!is.na(year))

Core-Argo data

core_temp <- read_rds(file = paste0(path_argo_core_preprocessed, "/temp_core_va.rds")) %>%
  filter(!is.na(year))

Core - temperature

core_temp_count <- core_temp %>%
  group_by(year, month, file_id, profile_range) %>%
  summarise(count_measures = n()) %>%
  ungroup()

core_temp_count <- core_temp_count %>%
  group_by(year, month, profile_range) %>%
  summarise(count_profiles = n()) %>%
  ungroup()

core_temp_count_agg <- core_temp_count %>%
  group_by(year, month) %>%
  summarise(count_profiles = sum(count_profiles)) %>%
  mutate(profile_range = 1) %>%
  ungroup()

core_temp_count_agg <- rbind(
  core_temp_count_agg,
  core_temp_count %>%
    filter (profile_range %in% c(2, 3)) %>%
    group_by(year, month) %>%
    summarise(count_profiles = sum(count_profiles)) %>%
    mutate(profile_range = 2) %>%
    ungroup()
)

core_temp_count_agg <- rbind(
  core_temp_count_agg,
  core_temp_count %>%
    filter (profile_range ==3)
)

# count of temperature profiles by year, month and profile range
core_temp_count_agg %>% 
  ggplot(aes(x = month, y = count_profiles, col = as.character(profile_range))) +
  geom_line() +
  geom_point() +
  facet_grid(. ~ year,
             scales = "free_y") +
  scale_x_continuous(breaks = seq(2,12,2)) +
  labs(x = 'month', 
       y = 'number of profiles',
       col = 'profile range',
       title = "Number of profiles",
       subtitle = "Complete core temperature profiles (1 = 600m, 2 = 1,000m, 3 = 1,500m)")

rm (core_temp, core_temp_count, core_temp_count_agg)

BGC - temperature

bgc_temp_count <- bgc_temp %>%
  group_by(year, month, file_id, profile_range) %>%
  summarise(count_measures = n()) %>%
  ungroup()

bgc_temp_count <- bgc_temp_count %>%
  group_by(year, month, profile_range) %>%
  summarise(count_profiles = n()) %>%
  ungroup()

bgc_temp_count_agg <- bgc_temp_count %>%
  group_by(year, month) %>%
  summarise(count_profiles = sum(count_profiles)) %>%
  mutate(profile_range = 1) %>%
  ungroup()

bgc_temp_count_agg <- rbind(
  bgc_temp_count_agg,
  bgc_temp_count %>%
    filter (profile_range %in% c(2, 3)) %>%
    group_by(year, month) %>%
    summarise(count_profiles = sum(count_profiles)) %>%
    mutate(profile_range = 2) %>%
    ungroup()
)

bgc_temp_count_agg <- rbind(
  bgc_temp_count_agg,
  bgc_temp_count %>%
    filter (profile_range ==3)
)

# count of temperature profiles by year, month and profile range
bgc_temp_count_agg %>% 
  ggplot(aes(x = month, y = count_profiles, col = as.character(profile_range))) +
  geom_line() +
  geom_point() +
  facet_grid(. ~ year,
             scales = "free_y") +
  scale_x_continuous(breaks = seq(2,12,2)) +
  labs(x = 'month', 
       y = 'number of profiles',
       col = 'profile range',
       title = "Number of profiles",
       subtitle = "Complete bgc temperature profiles (1 = 600m, 2 = 1,000m, 3 = 1,500m)")

rm (bgc_temp_count, bgc_temp_count_agg)

BGC - pH

bgc_ph_count <- bgc_ph %>%
  group_by(year, month, file_id, profile_range) %>%
  summarise(count_measures = n()) %>%
  ungroup()

bgc_ph_count <- bgc_ph_count %>%
  group_by(year, month, profile_range) %>%
  summarise(count_profiles = n()) %>%
  ungroup()

bgc_ph_count_agg <- bgc_ph_count %>%
  group_by(year, month) %>%
  summarise(count_profiles = sum(count_profiles)) %>%
  mutate(profile_range = 1) %>%
  ungroup()

bgc_ph_count_agg <- rbind(
  bgc_ph_count_agg,
  bgc_ph_count %>%
    filter (profile_range %in% c(2, 3)) %>%
    group_by(year, month) %>%
    summarise(count_profiles = sum(count_profiles)) %>%
    mutate(profile_range = 2) %>%
    ungroup()
)

bgc_ph_count_agg <- rbind(
  bgc_ph_count_agg,
  bgc_ph_count %>%
    filter (profile_range ==3)
)

# count of pH profiles by year, month and profile range
bgc_ph_count_agg %>% 
  ggplot(aes(x = month, y = count_profiles, col = as.character(profile_range))) +
  geom_line() +
  geom_point() +
  facet_grid(. ~ year,
             scales = "free_y") +
  scale_x_continuous(breaks = seq(2,12,2)) +
  labs(x = 'month', 
       y = 'number of profiles',
       col = 'profile range',
       title = "Number of profiles",
       subtitle = "Complete bgc pH profiles (1 = 600m, 2 = 1,000m, 3 = 1,500m)")

rm (bgc_ph_count, bgc_ph_count_agg)

BGC - temp AND pH

bgc_ph_temp <- inner_join(bgc_ph, bgc_temp %>% distinct(file_id)) 

bgc_ph_temp_count <- bgc_ph_temp %>%
  group_by(year, month, file_id, profile_range) %>%
  summarise(count_measures = n()) %>%
  ungroup()

bgc_ph_temp_count <- bgc_ph_temp_count %>%
  group_by(year, month, profile_range) %>%
  summarise(count_profiles = n()) %>%
  ungroup()

bgc_ph_temp_count_agg <- bgc_ph_temp_count %>%
  group_by(year, month) %>%
  summarise(count_profiles = sum(count_profiles)) %>%
  mutate(profile_range = 1) %>%
  ungroup()

bgc_ph_temp_count_agg <- rbind(
  bgc_ph_temp_count_agg,
  bgc_ph_temp_count %>%
    filter (profile_range %in% c(2, 3)) %>%
    group_by(year, month) %>%
    summarise(count_profiles = sum(count_profiles)) %>%
    mutate(profile_range = 2) %>%
    ungroup()
)

bgc_ph_temp_count_agg <- rbind(
  bgc_ph_temp_count_agg,
  bgc_ph_temp_count %>%
    filter (profile_range ==3)
)

# count of temperature AND pH profiles by year, month and profile range
bgc_ph_temp_count_agg %>% 
  ggplot(aes(x = month, y = count_profiles, col = as.character(profile_range))) +
  geom_line() +
  geom_point() +
  facet_grid(. ~ year,
             scales = "free_y") +
  scale_x_continuous(breaks = seq(2,12,2)) +
  labs(x = 'month', 
       y = 'number of profiles',
       col = 'profile range',
       title = "Number of profiles",
       subtitle = "Complete bgc temperature AND pH profiles (1 = 600m, 2 = 1,000m, 3 = 1,500m)")

rm (bgc_ph_temp, bgc_ph_temp_count, bgc_ph_temp_count_agg)

BGC - dissolved oxygen

bgc_doxy_count <- bgc_doxy %>%
  group_by(year, month, file_id, profile_range) %>%
  summarise(count_measures = n()) %>%
  ungroup()

bgc_doxy_count <- bgc_doxy_count %>%
  group_by(year, month, profile_range) %>%
  summarise(count_profiles = n()) %>%
  ungroup()

bgc_doxy_count_agg <- bgc_doxy_count %>%
  group_by(year, month) %>%
  summarise(count_profiles = sum(count_profiles)) %>%
  mutate(profile_range = 1) %>%
  ungroup()

bgc_doxy_count_agg <- rbind(
  bgc_doxy_count_agg,
  bgc_doxy_count %>%
    filter (profile_range %in% c(2, 3)) %>%
    group_by(year, month) %>%
    summarise(count_profiles = sum(count_profiles)) %>%
    mutate(profile_range = 2) %>%
    ungroup()
)

bgc_doxy_count_agg <- rbind(
  bgc_doxy_count_agg,
  bgc_doxy_count %>%
    filter (profile_range ==3)
)

# count of dissolved oxygen profiles by year, month and profile range
bgc_doxy_count_agg %>% 
  ggplot(aes(x = month, y = count_profiles, col = as.character(profile_range))) +
  geom_line() +
  geom_point() +
  facet_grid(. ~ year,
             scales = "free_y") +
  scale_x_continuous(breaks = seq(2,12,2)) +
  labs(x = 'month', 
       y = 'number of profiles',
       col = 'profile range',
       title = "Number of profiles",
       subtitle = "Complete bgc dissolved oxygen profiles (1 = 600m, 2 = 1,000m, 3 = 1,500m)")

rm (bgc_doxy_count, bgc_doxy_count_agg)

BGC - temp AND dissolved oxygen

bgc_doxy_temp <- inner_join(bgc_doxy, bgc_temp %>% distinct(file_id)) 

bgc_doxy_temp_count <- bgc_doxy_temp %>%
  group_by(year, month, file_id, profile_range) %>%
  summarise(count_measures = n()) %>%
  ungroup()

bgc_doxy_temp_count <- bgc_doxy_temp_count %>%
  group_by(year, month, profile_range) %>%
  summarise(count_profiles = n()) %>%
  ungroup()

bgc_doxy_temp_count_agg <- bgc_doxy_temp_count %>%
  group_by(year, month) %>%
  summarise(count_profiles = sum(count_profiles)) %>%
  mutate(profile_range = 1) %>%
  ungroup()

bgc_doxy_temp_count_agg <- rbind(
  bgc_doxy_temp_count_agg,
  bgc_doxy_temp_count %>%
    filter (profile_range %in% c(2, 3)) %>%
    group_by(year, month) %>%
    summarise(count_profiles = sum(count_profiles)) %>%
    mutate(profile_range = 2) %>%
    ungroup()
)

bgc_doxy_temp_count_agg <- rbind(
  bgc_doxy_temp_count_agg,
  bgc_doxy_temp_count %>%
    filter (profile_range ==3)
)

# count of temperature AND dissolved oxygen profiles by year, month and profile range
bgc_doxy_temp_count_agg %>% 
  ggplot(aes(x = month, y = count_profiles, col = as.character(profile_range))) +
  geom_line() +
  geom_point() +
  facet_grid(. ~ year,
             scales = "free_y") +
  scale_x_continuous(breaks = seq(2,12,2)) +
  labs(x = 'month', 
       y = 'number of profiles',
       col = 'profile range',
       title = "Number of profiles",
       subtitle = "Complete bgc temperature AND dissolved oxygen profiles (1 = 600m, 2 = 1,000m, 3 = 1,500m)")

rm (bgc_doxy_temp, bgc_doxy_temp_count, bgc_doxy_temp_count_agg)

BGC - nitrate

bgc_nitrate_count <- bgc_nitrate %>%
  group_by(year, month, file_id, profile_range) %>%
  summarise(count_measures = n()) %>%
  ungroup()

bgc_nitrate_count <- bgc_nitrate_count %>%
  group_by(year, month, profile_range) %>%
  summarise(count_profiles = n()) %>%
  ungroup()

bgc_nitrate_count_agg <- bgc_nitrate_count %>%
  group_by(year, month) %>%
  summarise(count_profiles = sum(count_profiles)) %>%
  mutate(profile_range = 1) %>%
  ungroup()

bgc_nitrate_count_agg <- rbind(
  bgc_nitrate_count_agg,
  bgc_nitrate_count %>%
    filter (profile_range %in% c(2, 3)) %>%
    group_by(year, month) %>%
    summarise(count_profiles = sum(count_profiles)) %>%
    mutate(profile_range = 2) %>%
    ungroup()
)

bgc_nitrate_count_agg <- rbind(
  bgc_nitrate_count_agg,
  bgc_nitrate_count %>%
    filter (profile_range ==3)
)

# count of nitrate profiles by year, month and profile range
bgc_nitrate_count_agg %>% 
  ggplot(aes(x = month, y = count_profiles, col = as.character(profile_range))) +
  geom_line() +
  geom_point() +
  facet_grid(. ~ year,
             scales = "free_y") +
  scale_x_continuous(breaks = seq(2,12,2)) +
  labs(x = 'month', 
       y = 'number of profiles',
       col = 'profile range',
       title = "Number of profiles",
       subtitle = "Complete bgc nitrate profiles (1 = 600m, 2 = 1,000m, 3 = 1,500m)")

rm (bgc_nitrate_count, bgc_nitrate_count_agg)

BGC - temp AND nitrate

bgc_nitrate_temp <- inner_join(bgc_nitrate, bgc_temp %>% distinct(file_id)) 

bgc_nitrate_temp_count <- bgc_nitrate_temp %>%
  group_by(year, month, file_id, profile_range) %>%
  summarise(count_measures = n()) %>%
  ungroup()

bgc_nitrate_temp_count <- bgc_nitrate_temp_count %>%
  group_by(year, month, profile_range) %>%
  summarise(count_profiles = n()) %>%
  ungroup()

bgc_nitrate_temp_count_agg <- bgc_nitrate_temp_count %>%
  group_by(year, month) %>%
  summarise(count_profiles = sum(count_profiles)) %>%
  mutate(profile_range = 1) %>%
  ungroup()

bgc_nitrate_temp_count_agg <- rbind(
  bgc_nitrate_temp_count_agg,
  bgc_nitrate_temp_count %>%
    filter (profile_range %in% c(2, 3)) %>%
    group_by(year, month) %>%
    summarise(count_profiles = sum(count_profiles)) %>%
    mutate(profile_range = 2) %>%
    ungroup()
)

bgc_nitrate_temp_count_agg <- rbind(
  bgc_nitrate_temp_count_agg,
  bgc_nitrate_temp_count %>%
    filter (profile_range ==3)
)

# count of temperature AND nitrate profiles by year, month and profile range
bgc_nitrate_temp_count_agg %>% 
  ggplot(aes(x = month, y = count_profiles, col = as.character(profile_range))) +
  geom_line() +
  geom_point() +
  facet_grid(. ~ year,
             scales = "free_y") +
  scale_x_continuous(breaks = seq(2,12,2)) +
  labs(x = 'month', 
       y = 'number of profiles',
       col = 'profile range',
       title = "Number of profiles",
       subtitle = "Complete bgc temperature AND nitrate profiles (1 = 600m, 2 = 1,000m, 3 = 1,500m)")

rm (bgc_nitrate_temp, bgc_nitrate_temp_count, bgc_nitrate_temp_count_agg)

BGC - chla

bgc_chla_count <- bgc_chla %>%
  group_by(year, month, file_id, profile_range) %>%
  summarise(count_measures = n()) %>%
  ungroup()

bgc_chla_count <- bgc_chla_count %>%
  group_by(year, month, profile_range) %>%
  summarise(count_profiles = n()) %>%
  ungroup()

bgc_chla_count_agg <- bgc_chla_count %>%
  group_by(year, month) %>%
  summarise(count_profiles = sum(count_profiles)) %>%
  mutate(profile_range = 1) %>%
  ungroup()

bgc_chla_count_agg <- rbind(
  bgc_chla_count_agg,
  bgc_chla_count %>%
    filter (profile_range %in% c(2, 3)) %>%
    group_by(year, month) %>%
    summarise(count_profiles = sum(count_profiles)) %>%
    mutate(profile_range = 2) %>%
    ungroup()
)

bgc_chla_count_agg <- rbind(
  bgc_chla_count_agg,
  bgc_chla_count %>%
    filter (profile_range ==3)
)

# count of chla profiles by year, month and profile range
bgc_chla_count_agg %>% 
  ggplot(aes(x = month, y = count_profiles, col = as.character(profile_range))) +
  geom_line() +
  geom_point() +
  facet_grid(. ~ year,
             scales = "free_y") +
  scale_x_continuous(breaks = seq(2,12,2)) +
  labs(x = 'month', 
       y = 'number of profiles',
       col = 'profile range',
       title = "Number of profiles",
       subtitle = "Complete bgc chlorophyll a profiles (1 = 600m, 2 = 1,000m, 3 = 1,500m)")

rm (bgc_chla_count, bgc_chla_count_agg)

BGC - temp AND chlorophyll a

bgc_chla_temp <- inner_join(bgc_chla, bgc_temp %>% distinct(file_id)) 

bgc_chla_temp_count <- bgc_chla_temp %>%
  group_by(year, month, file_id, profile_range) %>%
  summarise(count_measures = n()) %>%
  ungroup()

bgc_chla_temp_count <- bgc_chla_temp_count %>%
  group_by(year, month, profile_range) %>%
  summarise(count_profiles = n()) %>%
  ungroup()

bgc_chla_temp_count_agg <- bgc_chla_temp_count %>%
  group_by(year, month) %>%
  summarise(count_profiles = sum(count_profiles)) %>%
  mutate(profile_range = 1) %>%
  ungroup()

bgc_chla_temp_count_agg <- rbind(
  bgc_chla_temp_count_agg,
  bgc_chla_temp_count %>%
    filter (profile_range %in% c(2, 3)) %>%
    group_by(year, month) %>%
    summarise(count_profiles = sum(count_profiles)) %>%
    mutate(profile_range = 2) %>%
    ungroup()
)

bgc_chla_temp_count_agg <- rbind(
  bgc_chla_temp_count_agg,
  bgc_chla_temp_count %>%
    filter (profile_range ==3)
)

# count of temperature AND chlorophyll a profiles by year, month and profile range
bgc_chla_temp_count_agg %>% 
  ggplot(aes(x = month, y = count_profiles, col = as.character(profile_range))) +
  geom_line() +
  geom_point() +
  facet_grid(. ~ year,
             scales = "free_y") +
  scale_x_continuous(breaks = seq(2,12,2)) +
  labs(x = 'month', 
       y = 'number of profiles',
       col = 'profile range',
       title = "Number of profiles",
       subtitle = "Complete bgc temperature AND chlorophyll a profiles (1 = 600m, 2 = 1,000m, 3 = 1,500m)")

rm (bgc_chla_temp, bgc_chla_temp_count, bgc_chla_temp_count_agg)

BGC - temp, pH, doxy, nitrate AND chl a

bgc_all <- inner_join(bgc_ph, bgc_temp %>% distinct(file_id)) 
bgc_all <- inner_join(bgc_all, bgc_doxy %>% distinct(file_id)) 
bgc_all <- inner_join(bgc_all, bgc_nitrate %>% distinct(file_id)) 
bgc_all <- inner_join(bgc_all, bgc_chla %>% distinct(file_id)) 

bgc_all_count <- bgc_all %>%
  group_by(year, month, file_id, profile_range) %>%
  summarise(count_measures = n()) %>%
  ungroup()

bgc_all_count <- bgc_all_count %>%
  group_by(year, month, profile_range) %>%
  summarise(count_profiles = n()) %>%
  ungroup()

bgc_all_count_agg <- bgc_all_count %>%
  group_by(year, month) %>%
  summarise(count_profiles = sum(count_profiles)) %>%
  mutate(profile_range = 1) %>%
  ungroup()

bgc_all_count_agg <- rbind(
  bgc_all_count_agg,
  bgc_all_count %>%
    filter (profile_range %in% c(2, 3)) %>%
    group_by(year, month) %>%
    summarise(count_profiles = sum(count_profiles)) %>%
    mutate(profile_range = 2) %>%
    ungroup()
)

bgc_all_count_agg <- rbind(
  bgc_all_count_agg,
  bgc_all_count %>%
    filter (profile_range ==3)
)

# count of temp, pH, doxy, nitrate AND chl a profiles by year, month and profile range
bgc_all_count_agg %>% 
  ggplot(aes(x = month, y = count_profiles, col = as.character(profile_range))) +
  geom_line() +
  geom_point() +
  facet_grid(. ~ year,
             scales = "free_y") +
  scale_x_continuous(breaks = seq(2,12,2)) +
  labs(x = 'month', 
       y = 'number of profiles',
       col = 'profile range',
       title = "Number of profiles",
       subtitle = "Complete bgc temp, pH, doxy, nitrate AND chl a profiles (1 = 600m, 2 = 1,000m, 3 = 1,500m)")

rm (bgc_all, bgc_all_count, bgc_all_count_agg)

sessionInfo()
R version 4.2.2 (2022-10-31)
Platform: x86_64-pc-linux-gnu (64-bit)
Running under: openSUSE Leap 15.5

Matrix products: default
BLAS:   /usr/local/R-4.2.2/lib64/R/lib/libRblas.so
LAPACK: /usr/local/R-4.2.2/lib64/R/lib/libRlapack.so

locale:
 [1] LC_CTYPE=en_US.UTF-8       LC_NUMERIC=C              
 [3] LC_TIME=en_US.UTF-8        LC_COLLATE=en_US.UTF-8    
 [5] LC_MONETARY=en_US.UTF-8    LC_MESSAGES=en_US.UTF-8   
 [7] LC_PAPER=en_US.UTF-8       LC_NAME=C                 
 [9] LC_ADDRESS=C               LC_TELEPHONE=C            
[11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C       

attached base packages:
[1] stats     graphics  grDevices utils     datasets  methods   base     

other attached packages:
 [1] lubridate_1.9.0  timechange_0.1.1 argodata_0.1.0   forcats_0.5.2   
 [5] stringr_1.5.0    dplyr_1.1.3      purrr_1.0.2      readr_2.1.3     
 [9] tidyr_1.3.0      tibble_3.2.1     ggplot2_3.4.4    tidyverse_1.3.2 

loaded via a namespace (and not attached):
 [1] Rcpp_1.0.10         assertthat_0.2.1    rprojroot_2.0.3    
 [4] digest_0.6.30       utf8_1.2.2          R6_2.5.1           
 [7] cellranger_1.1.0    backports_1.4.1     reprex_2.0.2       
[10] evaluate_0.18       highr_0.9           httr_1.4.4         
[13] pillar_1.9.0        rlang_1.1.1         googlesheets4_1.0.1
[16] readxl_1.4.1        rstudioapi_0.15.0   whisker_0.4        
[19] jquerylib_0.1.4     rmarkdown_2.18      labeling_0.4.2     
[22] googledrive_2.0.0   munsell_0.5.0       broom_1.0.5        
[25] compiler_4.2.2      httpuv_1.6.6        modelr_0.1.10      
[28] xfun_0.35           pkgconfig_2.0.3     htmltools_0.5.3    
[31] tidyselect_1.2.0    workflowr_1.7.0     fansi_1.0.3        
[34] crayon_1.5.2        withr_2.5.0         tzdb_0.3.0         
[37] dbplyr_2.2.1        later_1.3.0         grid_4.2.2         
[40] jsonlite_1.8.3      gtable_0.3.1        lifecycle_1.0.3    
[43] DBI_1.1.3           git2r_0.30.1        magrittr_2.0.3     
[46] scales_1.2.1        cli_3.6.1           stringi_1.7.8      
[49] cachem_1.0.6        farver_2.1.1        fs_1.5.2           
[52] promises_1.2.0.1    xml2_1.3.3          bslib_0.4.1        
[55] ellipsis_0.3.2      generics_0.1.3      vctrs_0.6.4        
[58] tools_4.2.2         glue_1.6.2          RNetCDF_2.6-1      
[61] hms_1.1.2           fastmap_1.1.0       yaml_2.3.6         
[64] colorspace_2.0-3    gargle_1.2.1        rvest_1.0.3        
[67] knitr_1.41          haven_2.5.1         sass_0.4.4