Last updated: 2021-03-03

Checks: 7 0

Knit directory: emlr_mod_v_XXX/

This reproducible R Markdown analysis was created with workflowr (version 1.6.2). The Checks tab describes the reproducibility checks that were applied when the results were created. The Past versions tab lists the development history.


Great! Since the R Markdown file has been committed to the Git repository, you know the exact version of the code that produced these results.

Great job! The global environment was empty. Objects defined in the global environment can affect the analysis in your R Markdown file in unknown ways. For reproduciblity it’s best to always run the code in an empty environment.

The command set.seed(20200707) was run prior to running the code in the R Markdown file. Setting a seed ensures that any results that rely on randomness, e.g. subsampling or permutations, are reproducible.

Great job! Recording the operating system, R version, and package versions is critical for reproducibility.

Nice! There were no cached chunks for this analysis, so you can be confident that you successfully produced the results during this run.

Great job! Using relative paths to the files within your workflowr project makes it easier to run your code on other machines.

Great! You are using Git for version control. Tracking code development and connecting the code version to the results is critical for reproducibility.

The results in this page were generated with repository version 5bbf264. See the Past versions tab to see a history of the changes made to the R Markdown and HTML files.

Note that you need to be careful to ensure that all relevant files for the analysis have been committed to Git prior to generating the results (you can use wflow_publish or wflow_git_commit). workflowr only checks the R Markdown file, but you know if there are other scripts or data files that it depends on. Below is the status of the Git repository when the results were generated:


Ignored files:
    Ignored:    .Rhistory
    Ignored:    .Rproj.user/

Unstaged changes:
    Modified:   data/auxillary/params_local.rds

Note that any generated files, e.g. HTML, png, CSS, etc., are not included in this status report because it is ok for generated content to have uncommitted changes.


These are the previous versions of the repository in which changes were made to the R Markdown (analysis/eMLR_model_fitting.Rmd) and HTML (docs/eMLR_model_fitting.html) files. If you’ve configured a remote Git repository (see ?wflow_git_remote), click on the hyperlinks in the table below to view the files as they were in that past version.

File Version Author Date Message
html ffda45a Donghe-Zhu 2021-03-03 Build site.
html 691ba81 Donghe-Zhu 2021-03-03 Build site.
html c5e45a2 Donghe-Zhu 2021-03-03 Build site.
html 89c3e58 Donghe-Zhu 2021-03-03 Build site.
html c407a50 Donghe-Zhu 2021-03-03 Build site.
html c911669 Donghe-Zhu 2021-03-03 Build site.
Rmd e1f9d21 Donghe-Zhu 2021-03-03 local rebuild
html b71c719 Donghe-Zhu 2021-03-01 Build site.
html 13666ca Donghe-Zhu 2021-03-01 Build site.
Rmd c3195f4 Donghe-Zhu 2021-03-01 local rebuild
html c6e60fe Donghe-Zhu 2021-03-01 Build site.
Rmd 8ef147d Donghe-Zhu 2021-03-01 local rebuild
html 7a388f7 Donghe-Zhu 2021-03-01 Build site.
html 799e913 Donghe-Zhu 2021-03-01 Build site.
Rmd aa780a7 Donghe-Zhu 2021-03-01 local rebuild
html 66ff99f Donghe-Zhu 2021-03-01 Build site.
html ac9bb7a Donghe-Zhu 2021-02-28 Build site.
html efdc047 Donghe-Zhu 2021-02-28 Build site.
html e9a7418 Donghe-Zhu 2021-02-28 Build site.
Rmd eac1b0e Donghe-Zhu 2021-02-28 local rebuild
html e152917 Donghe-Zhu 2021-02-28 Build site.
html feb991c Donghe-Zhu 2021-02-27 Build site.
Rmd 4563314 Donghe-Zhu 2021-02-27 local rebuild
html 287123c Donghe-Zhu 2021-02-27 Build site.
Rmd 764a9c2 Donghe-Zhu 2021-02-27 local rebuild
html 54d5b5b Donghe-Zhu 2021-02-27 Build site.
Rmd 2e836bf Donghe-Zhu 2021-02-27 local rebuild
html 330f064 Donghe-Zhu 2021-02-27 Build site.
Rmd f360282 Donghe-Zhu 2021-02-27 local rebuild
html adbc9bc Donghe-Zhu 2021-02-27 Build site.
Rmd a8a8f9c Donghe-Zhu 2021-02-27 local rebuild
html 5937141 Donghe-Zhu 2021-02-27 Build site.
Rmd 5f0bfca Donghe-Zhu 2021-02-27 local rebuild
html 4414bbf Donghe-Zhu 2021-02-27 Build site.
html a265efb Donghe-Zhu 2021-02-27 Build site.
html 19edd1e Donghe-Zhu 2021-02-27 Build site.
Rmd 1ae5bb4 Donghe-Zhu 2021-02-27 local rebuild
html f20483f Donghe-Zhu 2021-02-26 Build site.
html 6a2c7b3 Donghe-Zhu 2021-02-25 Build site.
html 02b976d Donghe-Zhu 2021-02-24 Build site.
html 354c224 Donghe-Zhu 2021-02-24 Build site.
Rmd d910d39 Donghe-Zhu 2021-02-24 local rebuild
html 1a0a88a Donghe-Zhu 2021-02-24 Build site.
Rmd 663e891 Donghe-Zhu 2021-02-24 local rebuild
html 57f701e Donghe-Zhu 2021-02-24 Build site.
html 06f3149 Donghe-Zhu 2021-02-16 Build site.
html 401eab3 Donghe-Zhu 2021-02-15 Build site.
html e3bba84 Donghe-Zhu 2021-02-15 Build site.
html 5dce4b1 Donghe-Zhu 2021-02-15 Build site.
Rmd 35b0f2e Donghe-Zhu 2021-02-15 local rebuild
html 4469a0c Donghe-Zhu 2021-02-13 Build site.
Rmd 8186d57 Donghe-Zhu 2021-02-10 apply nr_obs
html 5ae6a69 Donghe-Zhu 2021-02-10 Build site.
Rmd eeb6557 Donghe-Zhu 2021-02-10 local rebuild
html 05385dc Donghe-Zhu 2021-02-10 Build site.
html f791ae4 Donghe-Zhu 2021-02-09 Build site.
html f71ae34 Donghe-Zhu 2021-02-09 Build site.
html c011832 Donghe-Zhu 2021-02-09 Build site.
html a145fa7 Donghe-Zhu 2021-02-09 Build site.
Rmd 37a41c8 Donghe-Zhu 2021-02-09 local rebuild
html c344e42 Donghe-Zhu 2021-02-08 Build site.
Rmd 8f5fa79 Donghe-Zhu 2021-02-08 local rebuild
html 2f095d7 Donghe-Zhu 2021-02-07 Build site.
html 2305044 Donghe-Zhu 2021-02-07 Build site.
Rmd c3638c1 Donghe-Zhu 2021-02-07 local rebuild
html 1fad5f1 Donghe-Zhu 2021-02-07 Build site.
html ca03c39 Donghe-Zhu 2021-02-07 Build site.
html e2ffc14 Donghe-Zhu 2021-02-05 Build site.
html cd7c52c Donghe-Zhu 2021-02-04 Build site.
Rmd bcf91a8 jens-daniel-mueller 2021-02-04 separate MLR tables, added plot residuals vs location
html bcf84f4 Donghe-Zhu 2021-02-02 Build site.
html a518739 Donghe-Zhu 2021-02-01 Build site.
html 61666de Donghe-Zhu 2021-01-31 Build site.
html 865b582 Donghe-Zhu 2021-01-31 Build site.
html 3e68089 Donghe-Zhu 2021-01-31 Build site.
html ecf335c Donghe-Zhu 2021-01-31 Build site.
html a618965 Donghe-Zhu 2021-01-31 Build site.
html 59e006e Donghe-Zhu 2021-01-31 Build site.
html a1c8f87 Donghe-Zhu 2021-01-31 Build site.
html ae5c18f Donghe-Zhu 2021-01-31 Build site.
html b50fe52 Donghe-Zhu 2021-01-31 Build site.
Rmd ac99ae5 jens-daniel-mueller 2021-01-29 code review
html ac99ae5 jens-daniel-mueller 2021-01-29 code review
html b5bdcaf Donghe-Zhu 2021-01-29 Build site.
Rmd b234505 Donghe-Zhu 2021-01-29 MLR approach across all depth
html 442010d Donghe-Zhu 2021-01-29 Build site.
Rmd e67e7dd Donghe-Zhu 2021-01-29 surface equilibrium approach across all latitudes irrespective of gamma
html 372adf5 Donghe-Zhu 2021-01-29 Build site.
html af8788e Donghe-Zhu 2021-01-29 Build site.
html 21c91c9 Donghe-Zhu 2021-01-29 Build site.
html eded038 Donghe-Zhu 2021-01-29 Build site.
html 541d4dd Donghe-Zhu 2021-01-29 Build site.
html 6a75576 Donghe-Zhu 2021-01-28 Build site.
html 16fba40 Donghe-Zhu 2021-01-28 Build site.
Rmd aecf0c6 Donghe-Zhu 2021-01-28 diagnostic ploting
Rmd a02684e Donghe-Zhu 2021-01-28 error
Rmd 4584be9 Donghe-Zhu 2021-01-28 latest
html 12bc567 Donghe-Zhu 2021-01-27 Build site.
html ceed31b Donghe-Zhu 2021-01-27 Build site.
html 342402d Donghe-Zhu 2021-01-27 Build site.
html 5bad5c2 Donghe-Zhu 2021-01-27 Build site.
Rmd c2c9529 Donghe-Zhu 2021-01-27 random subsetting based on lat
html 61efb56 Donghe-Zhu 2021-01-25 Build site.
html 48f638e Donghe-Zhu 2021-01-25 Build site.
html c1cec47 Donghe-Zhu 2021-01-25 Build site.
html 05ffb0c Donghe-Zhu 2021-01-25 Build site.
html 8b97165 Donghe-Zhu 2021-01-25 Build site.
html c569946 Donghe-Zhu 2021-01-24 Build site.
html a2f0d56 Donghe-Zhu 2021-01-23 Build site.
html 28509fc Donghe-Zhu 2021-01-23 Build site.
html 4c28e4a Donghe-Zhu 2021-01-22 Build site.
html 24cc264 jens-daniel-mueller 2021-01-22 cleaned /docs before creating copies
html 88eb28f Donghe-Zhu 2021-01-21 Build site.
html 2679490 Donghe-Zhu 2021-01-21 Build site.
html 7891955 Donghe-Zhu 2021-01-21 Build site.
html d4cf1cb Donghe-Zhu 2021-01-21 Build site.
Rmd 167eeec Donghe-Zhu 2021-01-21 surface DIC calculation with atmospheric equilibrium option
html 1f3e5b6 jens-daniel-mueller 2021-01-20 Build site.
html 0e7bdf1 jens-daniel-mueller 2021-01-15 cleaning template repository
html 73cbef3 jens-daniel-mueller 2021-01-15 Build site.
html 4571843 jens-daniel-mueller 2021-01-14 revision and html deleted for template copying
html 23151cd jens-daniel-mueller 2021-01-14 Build site.
html b3564aa jens-daniel-mueller 2021-01-14 Build site.
html 8d032c3 jens-daniel-mueller 2021-01-14 Build site.
html 022871c Donghe-Zhu 2021-01-13 Build site.
Rmd d44f36f Donghe-Zhu 2021-01-13 reorder analysis final
html 17dee1d jens-daniel-mueller 2021-01-13 Build site.
Rmd 9e04fd7 jens-daniel-mueller 2021-01-13 local rebuild after revision
html a076226 Donghe-Zhu 2021-01-11 Build site.
Rmd 52eff18 Donghe-Zhu 2021-01-09 Implemet model_run and subsetting
html 7cdea0c jens-daniel-mueller 2021-01-06 Build site.
Rmd b5934dd jens-daniel-mueller 2021-01-06 local rebuild after revision
html fa85b93 jens-daniel-mueller 2021-01-06 Build site.
html e5cb81a Donghe-Zhu 2021-01-05 Build site.
Rmd 608cc45 Donghe-Zhu 2021-01-05 modification of analysis
html a499f10 Donghe-Zhu 2021-01-05 Build site.
Rmd 715bdb4 Donghe-Zhu 2021-01-02 model modification
html fb8a752 Donghe-Zhu 2020-12-23 Build site.
Rmd 82e3c9c Donghe-Zhu 2020-12-23 first build after creating model template
html 8fae0b2 Donghe-Zhu 2020-12-21 Build site.
Rmd 00a1322 Donghe-Zhu 2020-12-21 first build after creating model template
Rmd d73ae35 Donghe-Zhu 2020-12-21 first version with lm error
html c8b76b3 jens-daniel-mueller 2020-12-19 Build site.
Rmd b5fedce jens-daniel-mueller 2020-12-19 first build after creating model template
Rmd 8e8abf5 Jens Müller 2020-12-18 Initial commit

1 Required data

Required are:

  • cleaned and prepared GLODAP-based synthetic model subsetting file
GLODAP <-
  read_csv(paste(path_version_data,
                 "GLODAPv2.2020_MLR_fitting_ready.csv",
                 sep = ""))

2 Predictor combinations

Find all possible combinations of following considered predictor variables:

  • sal, temp, aou, nitrate, silicate, phosphate, phosphate_star
# the following code is a workaround to find all predictor combinations
# using the olsrr package and fit all models for one era, slab, and basin

i_basin <- unique(GLODAP$basin)[1]
i_era   <- unique(GLODAP$era)[1]

# subset one basin and era for fitting
GLODAP_basin_era <- GLODAP %>%
  filter(basin == i_basin, era == i_era)

i_gamma_slab <- unique(GLODAP_basin_era$gamma_slab)[1]
print(i_gamma_slab)

# subset one gamma slab
GLODAP_basin_era_slab <- GLODAP_basin_era %>%
  filter(gamma_slab == i_gamma_slab)

# fit the full linear model, i.e. all predictor combinations
lm_full <- lm(paste(
  params_local$MLR_target,
  paste(params_local$MLR_predictors, collapse = " + "),
  sep = " ~ "
),
data = GLODAP_basin_era_slab)

# fit linear models for all possible predictor combinations
# unfortunately, this functions does not provide model coefficients (yet)
lm_all <- ols_step_all_possible(lm_full)

# convert to tibble
lm_all <- as_tibble(lm_all)

# extract relevant columns and format model formula
lm_all <- lm_all %>% 
  select(n, predictors) %>% 
  mutate(lm_coeff = str_replace_all(predictors, " ", " + "),
         lm_coeff = paste(params_local$MLR_target, "~", lm_coeff))

# remove certain predictor combinations
# lm_rm_ph <- lm_all %>%
#   filter(str_detect(lm_coeff, "phosphate_star")) %>%
#   mutate(lm_coeff_filter = str_remove(lm_coeff, "phosphate_star")) %>%
#   filter(
#     str_detect(lm_coeff_filter, "oxygen") &
#       str_detect(lm_coeff_filter, "phosphate")
#   )

# lm_rm_si <- lm_all %>%
#   filter(str_detect(lm_coeff, "silicate_star")) %>%
#   mutate(lm_coeff_filter = str_remove(lm_coeff, "silicate_star")) %>%
#   filter(str_detect(lm_coeff_filter, "silicate"))

# lm_rm_o2 <- lm_all %>%
#   filter(str_detect(lm_coeff, "phosphate_star")) %>%
#   mutate(lm_coeff_filter = str_remove(lm_coeff, "phosphate_star")) %>%
#   filter(
#     str_detect(lm_coeff_filter, "phosphate") &
#       str_detect(lm_coeff_filter, "oxygen")
#   )

# lm_rm <- bind_rows(lm_rm_ph, lm_rm_o2) %>%
#   select(-lm_coeff_filter) %>%
#   unique()


# remove temp sal predictor combination
lm_all <- lm_all %>%
  # filter(!(
  #   str_detect(lm_coeff, "temp") &
  #     str_detect(lm_coeff, "phosphate_star")
  # )) %>%
  mutate(lm_coeff_filter = str_remove(lm_coeff, "phosphate_star")) %>%
  filter(!(str_detect(lm_coeff_filter, "nitrate") &
             str_detect(lm_coeff_filter, "phosphate")
  )) %>%
  filter(!(
    str_detect(lm_coeff_filter, "temp") &
      str_detect(lm_coeff_filter, "sal")
  )) %>%
  filter(!(
    str_detect(lm_coeff_filter, "oxygen") &
      str_detect(lm_coeff_filter, "aou")
  )) %>%
  select(-lm_coeff_filter)

# lm_rm <- lm_rm_ph %>%
#   select(-lm_coeff_filter) %>%
#   unique()
# 
# lm_all <- anti_join(lm_all, lm_rm)

# remove helper objects
rm(
  i_gamma_slab,
  i_era,
  i_basin,
  GLODAP_basin_era,
  GLODAP_basin_era_slab,
  lm_full,
  lm_rm_ph,
  lm_rm_si,
  lm_rm_o2,
  lm_rm
)

3 Apply predictor threshold

Select combinations with a total number of predictors in the range:

  • Minimum: 3
  • Maximum: 9
lm_all <- lm_all %>% 
  filter(n >= params_local$MLR_predictors_min,
         n <= params_local$MLR_predictors_max)

This results in a total number of MLR models of:

  • 45

4 Fit all models

Individual linear regression models were fitted for the chosen target variable:

  • cstar_tref

as a function of each predictor combination. Fitting was performed separately within each basin, era, and slab. Model diagnostics, such as the root mean squared error (RMSE), were calculated for each fitted model.

# loop across all basins, era, gamma slabs, and MLRs
# fit all MLR models
for (i_basin in unique(GLODAP$basin)) {
  for (i_era in unique(GLODAP$era)) {
    #i_basin <- unique(GLODAP$basin)[1]
    #i_era   <- unique(GLODAP$era)[1]
    print(i_basin)
    print(i_era)
    
    GLODAP_basin_era <- GLODAP %>%
      filter(basin == i_basin, era == i_era)
    
    for (i_gamma_slab in unique(GLODAP_basin_era$gamma_slab)) {
      #i_gamma_slab <- unique(GLODAP_basin_era$gamma_slab)[1]
      print(i_gamma_slab)
      
      GLODAP_basin_era_slab <- GLODAP_basin_era %>%
        filter(gamma_slab == i_gamma_slab)
      
      # number of observations used for each fitting model
      i_nr_obs = nrow(GLODAP_basin_era_slab)
      
      for (i_predictors in unique(lm_all$predictors)) {
        #i_predictors <- unique(lm_all$predictors)[1]
        
        # extract one model definition
        i_lm <- lm_all %>%
          filter(predictors == i_predictors) %>%
          select(lm_coeff) %>%
          pull()
        
        # extract number of predictors
        i_n_predictors <- lm_all %>%
          filter(predictors == i_predictors) %>%
          select(n) %>%
          pull()
        
        if (i_nr_obs > i_n_predictors) {
          # fit model
          if (params_local$MLR_type == "rlm") {
            i_lm_fit <- MASS::rlm(as.formula(i_lm),
                                  data = GLODAP_basin_era_slab)
          }
          
          if (params_local$MLR_type == "lm") {
            i_lm_fit <- lm(as.formula(i_lm),
                           data = GLODAP_basin_era_slab)
          }
          
          # find max predictor correlation
          i_cor_max <- GLODAP_basin_era_slab %>%
            select(!!!syms(str_split(i_predictors, " ",
                                     simplify = TRUE))) %>%
            correlate(quiet = TRUE) %>%
            select(-term) %>%
            abs() %>%
            max(na.rm = TRUE)
          
          # calculate root mean squared error
          i_rmse <- sqrt(c(crossprod(i_lm_fit$residuals)) /
                           length(i_lm_fit$residuals))
          
          # calculate maximum residual
          i_resid_max <- max(abs(i_lm_fit$residuals))
          
          # calculate Akaike information criterion aic
          i_aic <- AIC(i_lm_fit)
          
          # collect model coefficients and diagnostics
          coefficients <- tidy(i_lm_fit)
          
          coefficients <- coefficients %>%
            mutate(
              basin = i_basin,
              era = i_era,
              gamma_slab = i_gamma_slab,
              model = i_lm,
              nr_obs = i_nr_obs,
              rmse = i_rmse,
              aic = i_aic,
              resid_max = i_resid_max,
              n_predictors = i_n_predictors,
              na_predictor = anyNA(coefficients$estimate),
              cor_max = i_cor_max
            )
          
          if (exists("lm_all_fitted")) {
            lm_all_fitted <- bind_rows(lm_all_fitted, coefficients)
          }
          
          if (!exists("lm_all_fitted")) {
            lm_all_fitted <- coefficients
          }
        }
      }
    }
  }
}

rm(
  i_lm_fit,
  coefficients,
  i_rmse,
  GLODAP_basin_era,
  GLODAP_basin_era_slab,
  i_lm,
  i_basin,
  i_era,
  i_gamma_slab,
  i_nr_obs,
  i_predictors,
  i_aic,
  i_n_predictors,
  i_resid_max
)

5 Prepare coeffcients

Coefficients are prepared for the mapping of Cant and the chosen target variable.

5.1 Formatting

# select relevant columns
lm_all_fitted <- lm_all_fitted %>%
  select(
    basin,
    gamma_slab,
    era,
    model,
    nr_obs,
    n_predictors,
    term,
    estimate,
    rmse,
    aic,
    resid_max,
    na_predictor,
    cor_max
  )

# set coefficient to zero if not fitted (=NA)
lm_all_fitted <- lm_all_fitted %>%
  mutate(estimate = if_else(is.na(estimate), 0, estimate))

# Prepare model coefficients for mapping of target variable
lm_all_fitted_wide <- lm_all_fitted %>%
  pivot_wider(
    values_from = estimate,
    names_from = term,
    names_prefix = "coeff_",
    values_fill = 0
  )

5.2 Predictor selection

Within each basin and slab, the following number of best linear regression models was selected:

  • 5

The criterion used to select the best models was:

  • aic

The criterion was summed up for two adjacent eras, and the models with lowest summed values were selected.

Please note, that currently the lm() function produces NAs for some predictors. It is not yet entirely clear when this happens, but presumably it is caused by some form of collinearity between predictors, such that including another predictor does not help to explain the target variable any better. The issues also expresses as exactly identical rmse values of different models. As an interim solution, models with fitted NA predictors were not included.

# remove models with predictors fitted as NA

lm_all_fitted_wide <- lm_all_fitted_wide %>%
  filter(na_predictor == FALSE)
# calculate RMSE sum for adjacent eras
lm_all_fitted_wide_eras <- lm_all_fitted_wide  %>%
  select(basin, gamma_slab, model, era, nr_obs, rmse, aic, resid_max) %>%
  arrange(era) %>%
  group_by(basin, gamma_slab, model) %>%
  mutate(
    eras = paste(lag(era), era, sep = " --> "),
    rmse_sum = rmse + lag(rmse),
    aic_sum = aic + lag(aic)
  ) %>%
  ungroup() %>%
  select(-c(era)) %>%
  drop_na()

# subset models with lowest summed criterion
# chose which criterion is applied

if (params_local$MLR_criterion == "aic") {
  lm_best <- lm_all_fitted_wide_eras %>%
    group_by(basin, gamma_slab, eras) %>%
    slice_min(order_by = aic_sum,
              with_ties = FALSE,
              n = params_local$MLR_number) %>%
    ungroup() %>%
    arrange(basin, gamma_slab, eras, model)
} else {
  lm_best <- lm_all_fitted_wide_eras %>%
    group_by(basin, gamma_slab, eras) %>%
    slice_min(order_by = rmse_sum,
              with_ties = FALSE,
              n = params_local$MLR_number) %>%
    ungroup() %>%
    arrange(basin, gamma_slab, eras, model)
}

5.3 RMSE tables

5.3.1 per model

lm_best %>%
  kable() %>%
  add_header_above() %>%
  kable_styling() %>%
  scroll_box(width = "100%", height = "400px")
basin gamma_slab model nr_obs rmse aic resid_max eras rmse_sum aic_sum
Atlantic (-Inf,26] cstar_tref ~ sal + aou + nitrate + phosphate_star 138 1.5621609 526.7424 6.535028 1982-1999 –> 2000-2010 3.2518625 1347.2344
Atlantic (-Inf,26] cstar_tref ~ sal + aou + phosphate + phosphate_star 138 1.0341977 412.9078 4.179751 1982-1999 –> 2000-2010 2.3705461 1135.8016
Atlantic (-Inf,26] cstar_tref ~ sal + aou + silicate + phosphate + phosphate_star 138 1.0338079 414.8038 4.140896 1982-1999 –> 2000-2010 2.3695004 1139.4933
Atlantic (-Inf,26] cstar_tref ~ temp + aou + phosphate + phosphate_star 138 1.4508864 506.3472 7.012112 1982-1999 –> 2000-2010 3.1131566 1320.0303
Atlantic (-Inf,26] cstar_tref ~ temp + aou + silicate + phosphate + phosphate_star 138 1.4369443 505.6822 6.608482 1982-1999 –> 2000-2010 3.0984327 1321.1696
Atlantic (-Inf,26] cstar_tref ~ sal + aou + phosphate + phosphate_star 92 1.2425411 313.0419 3.684842 2000-2010 –> 2011-2019 2.2767388 725.9497
Atlantic (-Inf,26] cstar_tref ~ sal + aou + silicate + phosphate + phosphate_star 92 1.1737104 304.5560 3.337674 2000-2010 –> 2011-2019 2.2075183 719.3597
Atlantic (-Inf,26] cstar_tref ~ sal + aou + silicate + phosphate_star 92 1.7091191 371.7047 4.482545 2000-2010 –> 2011-2019 3.2709906 898.3959
Atlantic (-Inf,26] cstar_tref ~ temp + aou + phosphate + phosphate_star 92 1.5863943 357.9940 6.073868 2000-2010 –> 2011-2019 3.0372808 864.3413
Atlantic (-Inf,26] cstar_tref ~ temp + aou + silicate + phosphate + phosphate_star 92 1.5384000 354.3414 5.490783 2000-2010 –> 2011-2019 2.9753443 860.0236
Atlantic (26,26.5] cstar_tref ~ sal + aou + silicate + phosphate + phosphate_star 903 3.5569805 4868.2581 13.513007 1982-1999 –> 2000-2010 7.0037255 12984.1830
Atlantic (26,26.5] cstar_tref ~ temp + aou + nitrate + phosphate_star 903 4.2332931 5180.6252 10.528465 1982-1999 –> 2000-2010 8.3917062 13867.0450
Atlantic (26,26.5] cstar_tref ~ temp + aou + nitrate + silicate 903 4.0489733 5100.2278 12.346901 1982-1999 –> 2000-2010 8.1333495 13731.8558
Atlantic (26,26.5] cstar_tref ~ temp + aou + nitrate + silicate + phosphate_star 903 4.0372383 5096.9859 12.952352 1982-1999 –> 2000-2010 8.1188942 13728.5819
Atlantic (26,26.5] cstar_tref ~ temp + aou + silicate + phosphate + phosphate_star 903 4.3331358 5224.7254 13.107752 1982-1999 –> 2000-2010 8.5682351 13968.8786
Atlantic (26,26.5] cstar_tref ~ sal + aou + silicate + phosphate + phosphate_star 710 3.5876836 3842.9523 11.056693 2000-2010 –> 2011-2019 7.1446642 8711.2104
Atlantic (26,26.5] cstar_tref ~ temp + aou + nitrate + phosphate_star 710 4.0777394 4022.7635 12.865584 2000-2010 –> 2011-2019 8.3110326 9203.3887
Atlantic (26,26.5] cstar_tref ~ temp + aou + nitrate + silicate 710 3.9167692 3965.5721 16.808870 2000-2010 –> 2011-2019 7.9657425 9065.7998
Atlantic (26,26.5] cstar_tref ~ temp + aou + nitrate + silicate + phosphate_star 710 3.9000219 3961.4874 18.379640 2000-2010 –> 2011-2019 7.9372602 9058.4733
Atlantic (26,26.5] cstar_tref ~ temp + aou + silicate + phosphate + phosphate_star 710 4.1918274 4063.9469 11.602249 2000-2010 –> 2011-2019 8.5249632 9288.6724
Atlantic (26.5,26.75] cstar_tref ~ aou + silicate + phosphate + phosphate_star 1185 3.2352167 6157.4917 10.813474 1982-1999 –> 2000-2010 6.3338302 15843.7868
Atlantic (26.5,26.75] cstar_tref ~ sal + aou + silicate + phosphate 1185 3.2467194 6165.9031 9.916606 1982-1999 –> 2000-2010 6.3936674 15910.9231
Atlantic (26.5,26.75] cstar_tref ~ sal + aou + silicate + phosphate + phosphate_star 1185 3.1712045 6112.1286 10.266114 1982-1999 –> 2000-2010 6.2303546 15751.7936
Atlantic (26.5,26.75] cstar_tref ~ temp + aou + nitrate + silicate + phosphate_star 1185 3.2452216 6166.8096 10.029110 1982-1999 –> 2000-2010 6.3899646 15911.1701
Atlantic (26.5,26.75] cstar_tref ~ temp + aou + silicate + phosphate + phosphate_star 1185 3.1158141 6070.3668 9.939754 1982-1999 –> 2000-2010 6.0988478 15614.4369
Atlantic (26.5,26.75] cstar_tref ~ aou + silicate + phosphate + phosphate_star 868 3.6003392 4699.1420 11.802729 2000-2010 –> 2011-2019 6.8355559 10856.6337
Atlantic (26.5,26.75] cstar_tref ~ sal + aou + silicate + phosphate 868 3.5314345 4665.5957 11.416965 2000-2010 –> 2011-2019 6.7781539 10831.4988
Atlantic (26.5,26.75] cstar_tref ~ sal + aou + silicate + phosphate + phosphate_star 868 3.5028068 4653.4654 11.671917 2000-2010 –> 2011-2019 6.6740113 10765.5940
Atlantic (26.5,26.75] cstar_tref ~ temp + aou + nitrate + silicate + phosphate_star 868 3.5201255 4662.0275 9.397928 2000-2010 –> 2011-2019 6.7653472 10828.8370
Atlantic (26.5,26.75] cstar_tref ~ temp + aou + silicate + phosphate + phosphate_star 868 3.4940939 4649.1419 11.129108 2000-2010 –> 2011-2019 6.6099080 10719.5087
Atlantic (26.75,27] cstar_tref ~ aou + silicate + phosphate + phosphate_star 2007 2.0756941 8639.0257 14.498483 1982-1999 –> 2000-2010 3.7482314 20792.0266
Atlantic (26.75,27] cstar_tref ~ sal + aou + silicate + phosphate + phosphate_star 2007 1.9862990 8464.3195 13.838369 1982-1999 –> 2000-2010 3.6392879 20545.4882
Atlantic (26.75,27] cstar_tref ~ temp + aou + nitrate + silicate + phosphate_star 2007 2.1812067 8840.0506 15.840559 1982-1999 –> 2000-2010 3.9768728 21441.1462
Atlantic (26.75,27] cstar_tref ~ temp + aou + silicate + phosphate 2007 2.1781623 8832.4442 15.001238 1982-1999 –> 2000-2010 3.9657538 21403.2367
Atlantic (26.75,27] cstar_tref ~ temp + aou + silicate + phosphate + phosphate_star 2007 2.0727203 8635.2710 16.865464 1982-1999 –> 2000-2010 3.5861696 20162.5823
Atlantic (26.75,27] cstar_tref ~ aou + silicate + phosphate + phosphate_star 1654 2.5494966 7801.7924 27.697323 2000-2010 –> 2011-2019 4.6251906 16440.8181
Atlantic (26.75,27] cstar_tref ~ sal + aou + silicate + phosphate 1654 2.4887515 7722.0208 24.985488 2000-2010 –> 2011-2019 4.6734377 16566.4695
Atlantic (26.75,27] cstar_tref ~ sal + aou + silicate + phosphate + phosphate_star 1654 2.4378718 7655.6917 26.094232 2000-2010 –> 2011-2019 4.4241708 16120.0111
Atlantic (26.75,27] cstar_tref ~ temp + aou + nitrate + silicate + phosphate_star 1654 2.5970570 7864.9341 23.518921 2000-2010 –> 2011-2019 4.7782637 16704.9847
Atlantic (26.75,27] cstar_tref ~ temp + aou + silicate + phosphate + phosphate_star 1654 2.1639596 7261.4252 22.660033 2000-2010 –> 2011-2019 4.2366800 15896.6962
Atlantic (27,27.25] cstar_tref ~ sal + aou + nitrate + silicate + phosphate_star 1718 2.0725267 7393.5213 9.772313 1982-1999 –> 2000-2010 4.3068081 19015.2868
Atlantic (27,27.25] cstar_tref ~ sal + aou + silicate + phosphate 1718 1.8811325 7058.5918 9.293604 1982-1999 –> 2000-2010 3.5975076 17301.2894
Atlantic (27,27.25] cstar_tref ~ sal + aou + silicate + phosphate + phosphate_star 1718 1.8537326 7010.1762 9.767083 1982-1999 –> 2000-2010 3.4237181 16789.3421
Atlantic (27,27.25] cstar_tref ~ temp + aou + nitrate + silicate + phosphate_star 1718 2.0295409 7321.5066 13.600022 1982-1999 –> 2000-2010 3.7061196 17443.6995
Atlantic (27,27.25] cstar_tref ~ temp + aou + silicate + phosphate + phosphate_star 1718 2.2806548 7722.3263 13.827815 1982-1999 –> 2000-2010 4.3570770 18961.4584
Atlantic (27,27.25] cstar_tref ~ sal + aou + nitrate + silicate + phosphate_star 1455 2.2352316 6483.7546 11.845042 2000-2010 –> 2011-2019 4.3077582 13877.2759
Atlantic (27,27.25] cstar_tref ~ sal + aou + silicate + phosphate 1455 2.2644017 6519.4849 13.764140 2000-2010 –> 2011-2019 4.1455342 13578.0768
Atlantic (27,27.25] cstar_tref ~ sal + aou + silicate + phosphate + phosphate_star 1455 2.2629528 6519.6223 13.921405 2000-2010 –> 2011-2019 4.1166854 13529.7985
Atlantic (27,27.25] cstar_tref ~ sal + aou + silicate + phosphate_star 1455 2.3287999 6601.0886 15.070391 2000-2010 –> 2011-2019 4.4437747 14062.2728
Atlantic (27,27.25] cstar_tref ~ temp + aou + nitrate + silicate + phosphate_star 1455 2.4732508 6778.2133 19.985420 2000-2010 –> 2011-2019 4.5027917 14099.7199
Atlantic (27.25,27.5] cstar_tref ~ sal + aou + nitrate + silicate 1746 2.5146894 8187.0787 13.276443 1982-1999 –> 2000-2010 5.1311935 21902.8349
Atlantic (27.25,27.5] cstar_tref ~ sal + aou + nitrate + silicate + phosphate_star 1746 2.4441909 8089.7831 12.544299 1982-1999 –> 2000-2010 4.9791595 21625.3166
Atlantic (27.25,27.5] cstar_tref ~ sal + aou + silicate + phosphate + phosphate_star 1746 2.6274808 8342.2945 21.211260 1982-1999 –> 2000-2010 4.7945288 20975.1987
Atlantic (27.25,27.5] cstar_tref ~ temp + aou + nitrate + silicate 1746 2.3305489 7921.5279 11.900975 1982-1999 –> 2000-2010 4.0506284 19222.8227
Atlantic (27.25,27.5] cstar_tref ~ temp + aou + nitrate + silicate + phosphate_star 1746 2.1999537 7722.1530 15.366013 1982-1999 –> 2000-2010 3.9158524 19011.4402
Atlantic (27.25,27.5] cstar_tref ~ aou + nitrate + silicate + phosphate_star 1388 2.9677724 6970.7385 21.519349 2000-2010 –> 2011-2019 5.7216853 15475.1474
Atlantic (27.25,27.5] cstar_tref ~ sal + aou + nitrate + silicate 1388 2.9418952 6946.4273 16.058883 2000-2010 –> 2011-2019 5.4565846 15133.5059
Atlantic (27.25,27.5] cstar_tref ~ sal + aou + nitrate + silicate + phosphate_star 1388 2.7521896 6763.3870 17.076695 2000-2010 –> 2011-2019 5.1963805 14853.1701
Atlantic (27.25,27.5] cstar_tref ~ temp + aou + nitrate + silicate 1388 3.0777910 7071.7862 11.915546 2000-2010 –> 2011-2019 5.4083399 14993.3141
Atlantic (27.25,27.5] cstar_tref ~ temp + aou + nitrate + silicate + phosphate_star 1388 2.7598039 6771.0565 16.780096 2000-2010 –> 2011-2019 4.9597576 14493.2095
Atlantic (27.5,27.75] cstar_tref ~ sal + aou + phosphate 2382 2.7621827 11610.1481 13.618961 1982-1999 –> 2000-2010 5.2372325 28984.7346
Atlantic (27.5,27.75] cstar_tref ~ sal + aou + phosphate + phosphate_star 2382 2.7395207 11572.9013 14.121872 1982-1999 –> 2000-2010 5.0053886 28290.0435
Atlantic (27.5,27.75] cstar_tref ~ sal + aou + silicate + phosphate 2382 2.4448440 11030.7501 13.704940 1982-1999 –> 2000-2010 4.8120289 28074.5694
Atlantic (27.5,27.75] cstar_tref ~ sal + aou + silicate + phosphate + phosphate_star 2382 2.3786567 10902.0003 14.526193 1982-1999 –> 2000-2010 4.4792246 27055.4408
Atlantic (27.5,27.75] cstar_tref ~ temp + aou + nitrate + silicate + phosphate_star 2382 3.0563377 12096.2467 16.041191 1982-1999 –> 2000-2010 5.4424987 29201.6932
Atlantic (27.5,27.75] cstar_tref ~ sal + aou + nitrate + silicate 1937 3.2145883 10032.6349 16.577579 2000-2010 –> 2011-2019 6.0243842 21726.2030
Atlantic (27.5,27.75] cstar_tref ~ sal + aou + nitrate + silicate + phosphate_star 1937 3.1752800 9986.9713 14.945718 2000-2010 –> 2011-2019 5.9793618 21672.8413
Atlantic (27.5,27.75] cstar_tref ~ sal + aou + phosphate + phosphate_star 1937 3.3297137 10168.9495 14.066023 2000-2010 –> 2011-2019 6.0692344 21741.8508
Atlantic (27.5,27.75] cstar_tref ~ sal + aou + silicate + phosphate 1937 2.8098769 9511.3548 15.377731 2000-2010 –> 2011-2019 5.2547209 20542.1050
Atlantic (27.5,27.75] cstar_tref ~ sal + aou + silicate + phosphate + phosphate_star 1937 2.8042018 9505.5226 15.279124 2000-2010 –> 2011-2019 5.1828584 20407.5228
Atlantic (27.75,27.85] cstar_tref ~ sal + aou + nitrate + silicate 855 1.9005157 3536.4191 13.314813 1982-1999 –> 2000-2010 3.9051640 9130.4540
Atlantic (27.75,27.85] cstar_tref ~ sal + aou + nitrate + silicate + phosphate_star 855 1.8423572 3485.2733 14.186977 1982-1999 –> 2000-2010 3.7940048 9010.5702
Atlantic (27.75,27.85] cstar_tref ~ sal + aou + phosphate + phosphate_star 855 1.9476121 3578.2778 12.448725 1982-1999 –> 2000-2010 3.6309090 8711.0670
Atlantic (27.75,27.85] cstar_tref ~ sal + aou + silicate + phosphate 855 1.7125124 3358.2991 12.282404 1982-1999 –> 2000-2010 3.5211896 8680.7497
Atlantic (27.75,27.85] cstar_tref ~ sal + aou + silicate + phosphate + phosphate_star 855 1.5238470 3160.7020 12.854686 1982-1999 –> 2000-2010 3.1208919 8156.6289
Atlantic (27.75,27.85] cstar_tref ~ sal + aou + nitrate + silicate 694 2.0171038 2955.3945 12.602743 2000-2010 –> 2011-2019 3.9176195 6491.8136
Atlantic (27.75,27.85] cstar_tref ~ sal + aou + nitrate + silicate + phosphate_star 694 2.0083437 2951.3535 12.900020 2000-2010 –> 2011-2019 3.8507009 6436.6267
Atlantic (27.75,27.85] cstar_tref ~ sal + aou + phosphate + phosphate_star 694 2.3686529 3178.3888 11.418228 2000-2010 –> 2011-2019 4.3162650 6756.6666
Atlantic (27.75,27.85] cstar_tref ~ sal + aou + silicate + phosphate 694 1.8392362 2827.2650 11.670593 2000-2010 –> 2011-2019 3.5517485 6185.5640
Atlantic (27.75,27.85] cstar_tref ~ sal + aou + silicate + phosphate + phosphate_star 694 1.7303093 2744.5274 12.029848 2000-2010 –> 2011-2019 3.2541563 5905.2293
Atlantic (27.85,27.95] cstar_tref ~ aou + silicate + phosphate + phosphate_star 821 3.2700339 4287.3392 34.820621 1982-1999 –> 2000-2010 6.1476320 10914.9293
Atlantic (27.85,27.95] cstar_tref ~ sal + aou + phosphate + phosphate_star 821 3.2604694 4282.5295 30.069446 1982-1999 –> 2000-2010 5.9904767 10769.4343
Atlantic (27.85,27.95] cstar_tref ~ sal + aou + silicate + phosphate + phosphate_star 821 3.2505442 4279.5235 28.085684 1982-1999 –> 2000-2010 5.9804223 10768.3018
Atlantic (27.85,27.95] cstar_tref ~ temp + aou + phosphate + phosphate_star 821 2.9167858 4099.6289 21.501124 1982-1999 –> 2000-2010 5.8335914 10763.3794
Atlantic (27.85,27.95] cstar_tref ~ temp + aou + silicate + phosphate + phosphate_star 821 2.9057458 4095.4022 21.303891 1982-1999 –> 2000-2010 5.7700012 10712.5740
Atlantic (27.85,27.95] cstar_tref ~ aou + silicate + phosphate + phosphate_star 731 3.7755824 4028.8350 24.278071 2000-2010 –> 2011-2019 7.0456163 8316.1743
Atlantic (27.85,27.95] cstar_tref ~ sal + aou + phosphate + phosphate_star 731 3.4079754 3879.0732 31.539245 2000-2010 –> 2011-2019 6.6684448 8161.6028
Atlantic (27.85,27.95] cstar_tref ~ sal + aou + silicate + phosphate + phosphate_star 731 3.3293057 3846.9288 30.295708 2000-2010 –> 2011-2019 6.5798499 8126.4523
Atlantic (27.85,27.95] cstar_tref ~ temp + aou + phosphate + phosphate_star 731 3.6982911 3998.5953 22.983455 2000-2010 –> 2011-2019 6.6150769 8098.2242
Atlantic (27.85,27.95] cstar_tref ~ temp + aou + silicate + phosphate + phosphate_star 731 3.6706108 3989.6117 24.150702 2000-2010 –> 2011-2019 6.5763566 8085.0139
Atlantic (27.95,28.05] cstar_tref ~ sal + aou + phosphate + phosphate_star 1016 4.6609329 6022.9692 26.327926 1982-1999 –> 2000-2010 9.4927923 16071.4267
Atlantic (27.95,28.05] cstar_tref ~ sal + aou + silicate + phosphate + phosphate_star 1016 4.5787836 5988.8357 25.413868 1982-1999 –> 2000-2010 9.3240605 15978.6838
Atlantic (27.95,28.05] cstar_tref ~ temp + aou + nitrate + phosphate_star 1016 4.1596314 5791.7497 22.697412 1982-1999 –> 2000-2010 8.1903611 15232.5434
Atlantic (27.95,28.05] cstar_tref ~ temp + aou + nitrate + silicate + phosphate_star 1016 3.9731188 5700.5315 24.698690 1982-1999 –> 2000-2010 7.5049281 14700.4016
Atlantic (27.95,28.05] cstar_tref ~ temp + aou + silicate + phosphate + phosphate_star 1016 4.5626775 5981.6755 21.968274 1982-1999 –> 2000-2010 9.4170465 16047.7123
Atlantic (27.95,28.05] cstar_tref ~ sal + aou + phosphate + phosphate_star 854 4.3591190 4950.1841 24.482101 2000-2010 –> 2011-2019 9.0200518 10973.1533
Atlantic (27.95,28.05] cstar_tref ~ sal + aou + silicate + phosphate + phosphate_star 854 4.3034100 4930.2154 24.473348 2000-2010 –> 2011-2019 8.8821937 10919.0512
Atlantic (27.95,28.05] cstar_tref ~ temp + aou + nitrate + phosphate_star 854 3.8115314 4720.9041 22.515294 2000-2010 –> 2011-2019 7.9711628 10512.6537
Atlantic (27.95,28.05] cstar_tref ~ temp + aou + nitrate + silicate + phosphate_star 854 3.4333251 4544.4149 26.895103 2000-2010 –> 2011-2019 7.4064439 10244.9464
Atlantic (27.95,28.05] cstar_tref ~ temp + aou + silicate + phosphate + phosphate_star 854 4.4106534 4972.2580 22.938388 2000-2010 –> 2011-2019 8.9733309 10953.9335
Atlantic (28.05,28.1] cstar_tref ~ aou + silicate + phosphate + phosphate_star 685 1.1739244 2175.6285 10.447220 1982-1999 –> 2000-2010 2.1269926 5137.7401
Atlantic (28.05,28.1] cstar_tref ~ sal + aou + phosphate + phosphate_star 685 1.0543254 2028.4204 7.246283 1982-1999 –> 2000-2010 1.9472148 4850.1704
Atlantic (28.05,28.1] cstar_tref ~ sal + aou + silicate + phosphate + phosphate_star 685 1.0206197 1985.9075 6.267908 1982-1999 –> 2000-2010 1.9129753 4808.3708
Atlantic (28.05,28.1] cstar_tref ~ temp + aou + phosphate + phosphate_star 685 1.1180870 2108.8640 10.759600 1982-1999 –> 2000-2010 2.0588959 5043.1151
Atlantic (28.05,28.1] cstar_tref ~ temp + aou + silicate + phosphate + phosphate_star 685 1.0592663 2036.8256 11.651813 1982-1999 –> 2000-2010 1.8985432 4727.3194
Atlantic (28.05,28.1] cstar_tref ~ sal + aou + nitrate + silicate + phosphate_star 553 1.1578690 1745.4649 7.747201 2000-2010 –> 2011-2019 2.2758741 3856.2286
Atlantic (28.05,28.1] cstar_tref ~ sal + aou + phosphate + phosphate_star 553 1.0938294 1680.5373 9.449358 2000-2010 –> 2011-2019 2.1481548 3708.9577
Atlantic (28.05,28.1] cstar_tref ~ sal + aou + silicate + phosphate + phosphate_star 553 1.0491050 1636.3648 8.200998 2000-2010 –> 2011-2019 2.0697247 3622.2723
Atlantic (28.05,28.1] cstar_tref ~ temp + aou + phosphate + phosphate_star 553 1.1005139 1687.2756 13.167362 2000-2010 –> 2011-2019 2.2186009 3796.1397
Atlantic (28.05,28.1] cstar_tref ~ temp + aou + silicate + phosphate + phosphate_star 553 1.0518980 1639.3054 13.891084 2000-2010 –> 2011-2019 2.1111643 3676.1309
Atlantic (28.1,28.15] cstar_tref ~ aou + silicate + phosphate + phosphate_star 799 0.8736417 2063.5981 9.651179 1982-1999 –> 2000-2010 1.5585504 4770.4120
Atlantic (28.1,28.15] cstar_tref ~ sal + aou + nitrate + silicate + phosphate_star 799 0.8422901 2007.1977 6.163232 1982-1999 –> 2000-2010 1.5505862 4802.9758
Atlantic (28.1,28.15] cstar_tref ~ sal + aou + phosphate + phosphate_star 799 0.7731525 1868.3319 5.676689 1982-1999 –> 2000-2010 1.4450278 4525.3851
Atlantic (28.1,28.15] cstar_tref ~ sal + aou + silicate + phosphate + phosphate_star 799 0.7583594 1839.4605 5.549422 1982-1999 –> 2000-2010 1.3878123 4329.5891
Atlantic (28.1,28.15] cstar_tref ~ temp + aou + silicate + phosphate + phosphate_star 799 0.8001503 1925.1805 9.633101 1982-1999 –> 2000-2010 1.3889400 4242.3443
Atlantic (28.1,28.15] cstar_tref ~ sal + aou + nitrate + silicate + phosphate_star 634 0.9257911 1715.4428 7.538886 2000-2010 –> 2011-2019 1.7680812 3722.6405
Atlantic (28.1,28.15] cstar_tref ~ sal + aou + phosphate + phosphate_star 634 0.8400290 1590.1777 6.642030 2000-2010 –> 2011-2019 1.6131814 3458.5096
Atlantic (28.1,28.15] cstar_tref ~ sal + aou + silicate + phosphate + phosphate_star 634 0.8391551 1590.8579 6.641684 2000-2010 –> 2011-2019 1.5975145 3430.3184
Atlantic (28.1,28.15] cstar_tref ~ temp + aou + phosphate + phosphate_star 634 0.9112747 1693.4030 11.656765 2000-2010 –> 2011-2019 1.7815510 3750.8334
Atlantic (28.1,28.15] cstar_tref ~ temp + aou + silicate + phosphate + phosphate_star 634 0.8256471 1570.2807 12.116337 2000-2010 –> 2011-2019 1.6257974 3495.4612
Atlantic (28.15,28.2] cstar_tref ~ sal + aou + nitrate + phosphate_star 1294 0.5909516 2322.8701 2.369480 1982-1999 –> 2000-2010 1.1236880 5845.2763
Atlantic (28.15,28.2] cstar_tref ~ sal + aou + nitrate + silicate + phosphate_star 1294 0.5407499 2095.1145 2.009350 1982-1999 –> 2000-2010 1.0584487 5492.1606
Atlantic (28.15,28.2] cstar_tref ~ temp + aou + nitrate + phosphate_star 1294 0.5919253 2327.1310 2.114490 1982-1999 –> 2000-2010 1.1557145 6101.5324
Atlantic (28.15,28.2] cstar_tref ~ temp + aou + nitrate + silicate 1294 0.5610862 2188.6577 2.126762 1982-1999 –> 2000-2010 1.1117371 5858.1782
Atlantic (28.15,28.2] cstar_tref ~ temp + aou + nitrate + silicate + phosphate_star 1294 0.5486132 2132.4772 2.245858 1982-1999 –> 2000-2010 1.0986624 5799.1345
Atlantic (28.15,28.2] cstar_tref ~ sal + aou + nitrate + phosphate_star 1065 0.7329106 2372.4808 5.199994 2000-2010 –> 2011-2019 1.3238622 4695.3509
Atlantic (28.15,28.2] cstar_tref ~ sal + aou + nitrate + silicate + phosphate_star 1065 0.7275030 2358.7071 5.749767 2000-2010 –> 2011-2019 1.2682529 4453.8215
Atlantic (28.15,28.2] cstar_tref ~ temp + aou + nitrate + phosphate_star 1065 0.8596180 2712.1399 9.457165 2000-2010 –> 2011-2019 1.4515433 5039.2709
Atlantic (28.15,28.2] cstar_tref ~ temp + aou + nitrate + silicate 1065 0.8514553 2691.8173 10.098604 2000-2010 –> 2011-2019 1.4125415 4880.4751
Atlantic (28.15,28.2] cstar_tref ~ temp + aou + nitrate + silicate + phosphate_star 1065 0.8513703 2693.6049 10.031960 2000-2010 –> 2011-2019 1.3999836 4826.0821
Atlantic (28.2, Inf] cstar_tref ~ sal + aou + nitrate 2283 0.3539537 1746.6747 1.941307 1982-1999 –> 2000-2010 0.6602221 3505.6331
Atlantic (28.2, Inf] cstar_tref ~ sal + aou + nitrate + phosphate_star 2283 0.3493314 1688.6551 1.914590 1982-1999 –> 2000-2010 0.6512820 3344.2324
Atlantic (28.2, Inf] cstar_tref ~ sal + aou + nitrate + silicate 2283 0.3536404 1744.6316 1.938967 1982-1999 –> 2000-2010 0.6584278 3469.6129
Atlantic (28.2, Inf] cstar_tref ~ sal + aou + nitrate + silicate + phosphate_star 2283 0.3412651 1583.9865 1.874295 1982-1999 –> 2000-2010 0.6403524 3170.8483
Atlantic (28.2, Inf] cstar_tref ~ temp + aou + nitrate + silicate + phosphate_star 2283 0.5126025 3441.6225 3.103768 1982-1999 –> 2000-2010 0.9716085 8207.5338
Atlantic (28.2, Inf] cstar_tref ~ sal + aou + nitrate 1967 0.4147946 2130.2948 2.430540 2000-2010 –> 2011-2019 0.7687482 3876.9695
Atlantic (28.2, Inf] cstar_tref ~ sal + aou + nitrate + phosphate_star 1967 0.3962301 1952.1633 2.371006 2000-2010 –> 2011-2019 0.7455615 3640.8184
Atlantic (28.2, Inf] cstar_tref ~ sal + aou + nitrate + silicate 1967 0.4077495 2064.9043 2.421900 2000-2010 –> 2011-2019 0.7613899 3809.5359
Atlantic (28.2, Inf] cstar_tref ~ sal + aou + nitrate + silicate + phosphate_star 1967 0.3876841 1868.3856 2.430333 2000-2010 –> 2011-2019 0.7289492 3452.3721
Atlantic (28.2, Inf] cstar_tref ~ temp + aou + nitrate + silicate + phosphate_star 1967 0.6964403 4172.8882 9.154760 2000-2010 –> 2011-2019 1.2090427 7614.5107
Indo-Pacific (-Inf,26] cstar_tref ~ sal + aou + phosphate + phosphate_star 4484 6.2624515 29189.4800 30.122873 1982-1999 –> 2000-2010 12.7919928 76607.3094
Indo-Pacific (-Inf,26] cstar_tref ~ sal + aou + silicate + phosphate + phosphate_star 4484 6.2211537 29132.1445 29.691492 1982-1999 –> 2000-2010 12.7000049 76439.8570
Indo-Pacific (-Inf,26] cstar_tref ~ temp + aou + nitrate + silicate + phosphate_star 4484 7.1900224 30430.1631 31.792635 1982-1999 –> 2000-2010 14.7183794 79897.6977
Indo-Pacific (-Inf,26] cstar_tref ~ temp + aou + silicate + phosphate + phosphate_star 4484 7.3021929 30568.9915 29.394245 1982-1999 –> 2000-2010 14.8863726 80142.8045
Indo-Pacific (-Inf,26] cstar_tref ~ temp + silicate + phosphate + phosphate_star 4484 7.4011572 30687.7157 28.721206 1982-1999 –> 2000-2010 15.1154602 80504.2589
Indo-Pacific (-Inf,26] cstar_tref ~ sal + aou + phosphate + phosphate_star 3620 5.9822711 23236.0290 24.783697 2000-2010 –> 2011-2019 12.2447226 52425.5090
Indo-Pacific (-Inf,26] cstar_tref ~ sal + aou + silicate + phosphate + phosphate_star 3620 5.9125324 23153.1324 24.045503 2000-2010 –> 2011-2019 12.1336861 52285.2770
Indo-Pacific (-Inf,26] cstar_tref ~ temp + aou + nitrate + silicate + phosphate_star 3620 7.0143253 24390.3058 25.654692 2000-2010 –> 2011-2019 14.2043477 54820.4689
Indo-Pacific (-Inf,26] cstar_tref ~ temp + aou + silicate + phosphate + phosphate_star 3620 7.0552862 24432.4615 25.263739 2000-2010 –> 2011-2019 14.3574791 55001.4531
Indo-Pacific (-Inf,26] cstar_tref ~ temp + silicate + phosphate + phosphate_star 3620 7.1801867 24557.5108 24.268755 2000-2010 –> 2011-2019 14.5813439 55245.2264
Indo-Pacific (26,26.5] cstar_tref ~ aou + silicate + phosphate + phosphate_star 4649 4.8024551 27795.0358 41.501394 1982-1999 –> 2000-2010 9.4496392 73388.0407
Indo-Pacific (26,26.5] cstar_tref ~ sal + aou + silicate + phosphate + phosphate_star 4649 4.4408878 27069.2538 44.888541 1982-1999 –> 2000-2010 8.6872605 71273.0705
Indo-Pacific (26,26.5] cstar_tref ~ temp + aou + nitrate + silicate + phosphate_star 4649 4.6481645 27493.4109 49.192612 1982-1999 –> 2000-2010 9.0598064 72286.1436
Indo-Pacific (26,26.5] cstar_tref ~ temp + aou + silicate + phosphate 4649 4.8090257 27807.7484 39.710764 1982-1999 –> 2000-2010 9.4287860 73309.4642
Indo-Pacific (26,26.5] cstar_tref ~ temp + aou + silicate + phosphate + phosphate_star 4649 4.7948461 27782.2925 40.888279 1982-1999 –> 2000-2010 9.4145152 73285.7034
Indo-Pacific (26,26.5] cstar_tref ~ aou + silicate + phosphate + phosphate_star 3794 4.9439290 22905.7463 41.470670 2000-2010 –> 2011-2019 9.7463840 50700.7821
Indo-Pacific (26,26.5] cstar_tref ~ sal + aou + silicate + phosphate + phosphate_star 3794 4.6050429 22368.9348 44.026694 2000-2010 –> 2011-2019 9.0459307 49438.1886
Indo-Pacific (26,26.5] cstar_tref ~ temp + aou + nitrate + silicate + phosphate_star 3794 4.7582837 22617.3285 47.149314 2000-2010 –> 2011-2019 9.4064482 50110.7394
Indo-Pacific (26,26.5] cstar_tref ~ temp + aou + silicate + phosphate 3794 4.9331516 22889.1871 40.344940 2000-2010 –> 2011-2019 9.7421773 50696.9355
Indo-Pacific (26,26.5] cstar_tref ~ temp + aou + silicate + phosphate + phosphate_star 3794 4.9294606 22885.5075 40.824625 2000-2010 –> 2011-2019 9.7243067 50667.8000
Indo-Pacific (26.5,26.75] cstar_tref ~ aou + silicate + phosphate + phosphate_star 3848 3.9905621 21582.8924 21.745319 1982-1999 –> 2000-2010 7.9396295 56712.3410
Indo-Pacific (26.5,26.75] cstar_tref ~ sal + aou + silicate + phosphate + phosphate_star 3848 3.8807513 21370.1483 19.849239 1982-1999 –> 2000-2010 7.6381460 55875.8951
Indo-Pacific (26.5,26.75] cstar_tref ~ temp + aou + nitrate + silicate + phosphate_star 3848 3.9660697 21537.5120 33.064789 1982-1999 –> 2000-2010 7.9569494 56801.4139
Indo-Pacific (26.5,26.75] cstar_tref ~ temp + aou + silicate + phosphate + phosphate_star 3848 3.9017846 21411.7473 20.726166 1982-1999 –> 2000-2010 7.7789766 56312.1967
Indo-Pacific (26.5,26.75] cstar_tref ~ temp + nitrate + silicate + phosphate_star 3848 3.9664102 21536.1727 32.900429 1982-1999 –> 2000-2010 8.0279408 57018.7608
Indo-Pacific (26.5,26.75] cstar_tref ~ aou + silicate + phosphate + phosphate_star 3143 4.3952443 18238.0159 24.561008 2000-2010 –> 2011-2019 8.3858064 39820.9083
Indo-Pacific (26.5,26.75] cstar_tref ~ sal + aou + silicate + phosphate + phosphate_star 3143 4.2668415 18053.6406 24.765936 2000-2010 –> 2011-2019 8.1475928 39423.7890
Indo-Pacific (26.5,26.75] cstar_tref ~ temp + aou + nitrate + silicate + phosphate_star 3143 4.3240503 18137.3618 31.696967 2000-2010 –> 2011-2019 8.2901199 39674.8738
Indo-Pacific (26.5,26.75] cstar_tref ~ temp + aou + silicate + phosphate + phosphate_star 3143 4.2646943 18050.4766 22.795115 2000-2010 –> 2011-2019 8.1664789 39462.2239
Indo-Pacific (26.5,26.75] cstar_tref ~ temp + nitrate + silicate + phosphate_star 3143 4.3368573 18153.9523 34.262429 2000-2010 –> 2011-2019 8.3032675 39690.1250
Indo-Pacific (26.75,27] cstar_tref ~ aou + silicate + phosphate + phosphate_star 4467 4.4742662 26074.9876 18.384173 1982-1999 –> 2000-2010 8.4712504 68328.0451
Indo-Pacific (26.75,27] cstar_tref ~ sal + aou + phosphate + phosphate_star 4467 4.2513273 25618.3608 21.539668 1982-1999 –> 2000-2010 7.9391344 66658.8047
Indo-Pacific (26.75,27] cstar_tref ~ sal + aou + silicate + phosphate + phosphate_star 4467 4.2322670 25580.2163 20.575508 1982-1999 –> 2000-2010 7.9061647 66565.7433
Indo-Pacific (26.75,27] cstar_tref ~ temp + aou + phosphate + phosphate_star 4467 4.1568978 25417.6838 22.680123 1982-1999 –> 2000-2010 7.8370935 66427.0089
Indo-Pacific (26.75,27] cstar_tref ~ temp + aou + silicate + phosphate + phosphate_star 4467 4.1192889 25338.4869 20.988542 1982-1999 –> 2000-2010 7.7717526 66235.8830
Indo-Pacific (26.75,27] cstar_tref ~ aou + silicate + phosphate + phosphate_star 3755 4.9077345 22615.2297 19.517122 2000-2010 –> 2011-2019 9.3820007 48690.2172
Indo-Pacific (26.75,27] cstar_tref ~ sal + aou + phosphate + phosphate_star 3755 4.6853329 22266.9500 21.537757 2000-2010 –> 2011-2019 8.9366602 47885.3108
Indo-Pacific (26.75,27] cstar_tref ~ sal + aou + silicate + phosphate + phosphate_star 3755 4.6745542 22251.6532 20.722111 2000-2010 –> 2011-2019 8.9068212 47831.8695
Indo-Pacific (26.75,27] cstar_tref ~ temp + aou + phosphate + phosphate_star 3755 4.5848207 22104.0884 17.762636 2000-2010 –> 2011-2019 8.7417185 47521.7721
Indo-Pacific (26.75,27] cstar_tref ~ temp + aou + silicate + phosphate + phosphate_star 3755 4.5607657 22066.5823 16.916459 2000-2010 –> 2011-2019 8.6800546 47405.0692
Indo-Pacific (27,27.25] cstar_tref ~ sal + aou + silicate + phosphate + phosphate_star 5542 4.3330765 31993.7377 42.631683 1982-1999 –> 2000-2010 7.8988114 79556.2541
Indo-Pacific (27,27.25] cstar_tref ~ temp + aou + nitrate + silicate + phosphate_star 5542 4.1023515 31387.2497 50.065974 1982-1999 –> 2000-2010 7.4690045 77934.3751
Indo-Pacific (27,27.25] cstar_tref ~ temp + aou + phosphate + phosphate_star 5542 4.3171626 31950.9551 46.277928 1982-1999 –> 2000-2010 7.9252312 79720.0678
Indo-Pacific (27,27.25] cstar_tref ~ temp + aou + silicate + phosphate + phosphate_star 5542 3.9178231 30877.1176 31.968831 1982-1999 –> 2000-2010 7.2206538 77085.9772
Indo-Pacific (27,27.25] cstar_tref ~ temp + nitrate + silicate + phosphate_star 5542 4.5822791 32611.5406 72.682445 1982-1999 –> 2000-2010 8.0765040 79814.0065
Indo-Pacific (27,27.25] cstar_tref ~ aou + silicate + phosphate + phosphate_star 4394 5.0667861 26741.9784 31.695512 2000-2010 –> 2011-2019 9.4506952 58862.9891
Indo-Pacific (27,27.25] cstar_tref ~ sal + aou + silicate + phosphate + phosphate_star 4394 5.0220198 26665.9892 33.949988 2000-2010 –> 2011-2019 9.3550963 58659.7269
Indo-Pacific (27,27.25] cstar_tref ~ temp + aou + nitrate + silicate + phosphate_star 4394 4.8756983 26406.1379 36.885352 2000-2010 –> 2011-2019 8.9780498 57793.3876
Indo-Pacific (27,27.25] cstar_tref ~ temp + aou + phosphate + phosphate_star 4394 5.0361214 26688.6309 40.506889 2000-2010 –> 2011-2019 9.3532840 58639.5860
Indo-Pacific (27,27.25] cstar_tref ~ temp + aou + silicate + phosphate + phosphate_star 4394 4.4115113 25526.9337 26.045742 2000-2010 –> 2011-2019 8.3293344 56404.0513
Indo-Pacific (27.25,27.5] cstar_tref ~ sal + aou + nitrate + silicate + phosphate_star 4967 3.4111729 26299.3116 32.135867 1982-1999 –> 2000-2010 6.3325585 65631.2012
Indo-Pacific (27.25,27.5] cstar_tref ~ sal + aou + silicate + phosphate + phosphate_star 4967 3.6744463 27037.8673 32.194731 1982-1999 –> 2000-2010 6.7449218 67155.3963
Indo-Pacific (27.25,27.5] cstar_tref ~ sal + aou + silicate + phosphate_star 4967 3.6889493 27074.9995 31.509697 1982-1999 –> 2000-2010 6.7600796 67193.8945
Indo-Pacific (27.25,27.5] cstar_tref ~ temp + aou + nitrate + silicate + phosphate_star 4967 3.6017395 26839.3312 32.763063 1982-1999 –> 2000-2010 6.6852283 67023.6147
Indo-Pacific (27.25,27.5] cstar_tref ~ temp + aou + silicate + phosphate + phosphate_star 4967 3.3185383 26025.8109 33.178319 1982-1999 –> 2000-2010 6.2428316 65373.4031
Indo-Pacific (27.25,27.5] cstar_tref ~ sal + aou + nitrate + silicate + phosphate_star 4007 3.8895971 22270.8344 30.979101 2000-2010 –> 2011-2019 7.3007701 48570.1460
Indo-Pacific (27.25,27.5] cstar_tref ~ sal + aou + silicate + phosphate + phosphate_star 4007 4.2014468 22888.9009 32.220987 2000-2010 –> 2011-2019 7.8758930 49926.7682
Indo-Pacific (27.25,27.5] cstar_tref ~ sal + aou + silicate + phosphate_star 4007 4.2453334 22970.1777 30.526464 2000-2010 –> 2011-2019 7.9342826 50045.1772
Indo-Pacific (27.25,27.5] cstar_tref ~ temp + aou + nitrate + silicate + phosphate_star 4007 4.1765503 22841.2712 31.079200 2000-2010 –> 2011-2019 7.7782898 49680.6023
Indo-Pacific (27.25,27.5] cstar_tref ~ temp + aou + silicate + phosphate + phosphate_star 4007 3.7690403 22018.5122 33.027470 2000-2010 –> 2011-2019 7.0875786 48044.3231
Indo-Pacific (27.5,27.75] cstar_tref ~ sal + aou + nitrate + silicate + phosphate_star 4934 3.1622396 25376.9216 23.467655 1982-1999 –> 2000-2010 5.4762007 61991.4701
Indo-Pacific (27.5,27.75] cstar_tref ~ sal + aou + silicate + phosphate + phosphate_star 4934 3.1334691 25286.7303 9.803062 1982-1999 –> 2000-2010 5.4770265 62107.2946
Indo-Pacific (27.5,27.75] cstar_tref ~ sal + aou + silicate + phosphate_star 4934 3.2646972 25689.5776 21.916582 1982-1999 –> 2000-2010 5.6262901 62632.4131
Indo-Pacific (27.5,27.75] cstar_tref ~ sal + nitrate + silicate + phosphate_star 4934 3.3053682 25811.7519 28.662766 1982-1999 –> 2000-2010 5.6904705 62915.1587
Indo-Pacific (27.5,27.75] cstar_tref ~ sal + silicate + phosphate + phosphate_star 4934 3.3173711 25847.5210 24.791454 1982-1999 –> 2000-2010 5.6945934 62897.2836
Indo-Pacific (27.5,27.75] cstar_tref ~ sal + aou + nitrate + silicate + phosphate_star 4006 3.9723248 22433.8999 26.174799 2000-2010 –> 2011-2019 7.1345644 47810.8215
Indo-Pacific (27.5,27.75] cstar_tref ~ sal + aou + silicate + phosphate + phosphate_star 4006 3.8155457 22111.2740 10.753469 2000-2010 –> 2011-2019 6.9490148 47398.0044
Indo-Pacific (27.5,27.75] cstar_tref ~ sal + aou + silicate + phosphate_star 4006 4.1351566 22753.7714 24.548760 2000-2010 –> 2011-2019 7.3998538 48443.3490
Indo-Pacific (27.5,27.75] cstar_tref ~ sal + nitrate + silicate + phosphate_star 4006 4.1639733 22809.4111 32.338700 2000-2010 –> 2011-2019 7.4693415 48621.1630
Indo-Pacific (27.5,27.75] cstar_tref ~ temp + aou + silicate + phosphate + phosphate_star 4006 4.0318574 22553.0836 20.361122 2000-2010 –> 2011-2019 7.3040861 48267.4000
Indo-Pacific (27.75,27.85] cstar_tref ~ aou + silicate + phosphate + phosphate_star 1933 2.6958504 9331.5815 20.445281 1982-1999 –> 2000-2010 4.6277393 22352.4905
Indo-Pacific (27.75,27.85] cstar_tref ~ sal + aou + silicate + phosphate + phosphate_star 1933 2.6952714 9332.7511 20.622527 1982-1999 –> 2000-2010 4.6169952 22322.6241
Indo-Pacific (27.75,27.85] cstar_tref ~ temp + aou + nitrate + silicate + phosphate_star 1933 2.6957403 9333.4236 20.654923 1982-1999 –> 2000-2010 4.6321579 22370.9948
Indo-Pacific (27.75,27.85] cstar_tref ~ temp + aou + silicate + phosphate 1933 2.7062245 9346.4300 20.056930 1982-1999 –> 2000-2010 4.6515120 22410.6193
Indo-Pacific (27.75,27.85] cstar_tref ~ temp + aou + silicate + phosphate + phosphate_star 1933 2.6092118 9207.2966 20.356568 1982-1999 –> 2000-2010 4.5167940 22150.9186
Indo-Pacific (27.75,27.85] cstar_tref ~ sal + aou + nitrate + silicate + phosphate_star 1648 3.1007702 8420.7415 30.298833 2000-2010 –> 2011-2019 5.7973354 17755.3480
Indo-Pacific (27.75,27.85] cstar_tref ~ sal + aou + silicate + phosphate + phosphate_star 1648 3.1316820 8453.4369 29.493657 2000-2010 –> 2011-2019 5.8269534 17786.1880
Indo-Pacific (27.75,27.85] cstar_tref ~ sal + nitrate + silicate + phosphate_star 1648 3.1100170 8428.5559 28.314959 2000-2010 –> 2011-2019 5.8075401 17762.5355
Indo-Pacific (27.75,27.85] cstar_tref ~ temp + aou + phosphate + phosphate_star 1648 3.0782123 8394.6758 30.602797 2000-2010 –> 2011-2019 5.7911352 17750.6629
Indo-Pacific (27.75,27.85] cstar_tref ~ temp + aou + silicate + phosphate + phosphate_star 1648 3.0255771 8339.8291 27.765869 2000-2010 –> 2011-2019 5.6347889 17547.1257
Indo-Pacific (27.85,27.95] cstar_tref ~ temp + aou + nitrate + phosphate_star 2403 2.7869568 11757.3295 26.027700 1982-1999 –> 2000-2010 4.9083498 29180.8413
Indo-Pacific (27.85,27.95] cstar_tref ~ temp + aou + nitrate + silicate 2403 2.7856813 11755.1294 25.850462 1982-1999 –> 2000-2010 4.9613234 29381.1535
Indo-Pacific (27.85,27.95] cstar_tref ~ temp + aou + nitrate + silicate + phosphate_star 2403 2.7808081 11748.7146 25.609707 1982-1999 –> 2000-2010 4.9014816 29171.5062
Indo-Pacific (27.85,27.95] cstar_tref ~ temp + nitrate + phosphate_star 2403 2.8279763 11825.5505 30.583391 1982-1999 –> 2000-2010 4.9504586 29251.1795
Indo-Pacific (27.85,27.95] cstar_tref ~ temp + nitrate + silicate + phosphate_star 2403 2.8173376 11809.4365 29.735866 1982-1999 –> 2000-2010 4.9392148 29234.7791
Indo-Pacific (27.85,27.95] cstar_tref ~ temp + aou + nitrate 2046 3.1312405 10487.0250 35.046588 2000-2010 –> 2011-2019 5.9219592 22248.8374
Indo-Pacific (27.85,27.95] cstar_tref ~ temp + aou + nitrate + phosphate_star 2046 3.1228292 10478.0181 35.215964 2000-2010 –> 2011-2019 5.9097860 22235.3476
Indo-Pacific (27.85,27.95] cstar_tref ~ temp + aou + nitrate + silicate 2046 3.1187952 10472.7286 34.654059 2000-2010 –> 2011-2019 5.9044765 22227.8580
Indo-Pacific (27.85,27.95] cstar_tref ~ temp + aou + nitrate + silicate + phosphate_star 2046 3.1112502 10464.8172 34.828329 2000-2010 –> 2011-2019 5.8920583 22213.5318
Indo-Pacific (27.85,27.95] cstar_tref ~ temp + nitrate + silicate + phosphate_star 2046 3.1117790 10463.5128 34.254667 2000-2010 –> 2011-2019 5.9291166 22272.9493
Indo-Pacific (27.95,28.05] cstar_tref ~ aou + silicate + phosphate + phosphate_star 2062 2.2219750 9156.2894 8.230091 1982-1999 –> 2000-2010 4.1441387 23853.2450
Indo-Pacific (27.95,28.05] cstar_tref ~ sal + aou + silicate + phosphate + phosphate_star 2062 2.1759231 9071.9187 8.437911 1982-1999 –> 2000-2010 4.0666418 23653.9946
Indo-Pacific (27.95,28.05] cstar_tref ~ temp + aou + nitrate + silicate + phosphate_star 2062 2.2238776 9161.8192 8.040775 1982-1999 –> 2000-2010 4.1588755 23907.9303
Indo-Pacific (27.95,28.05] cstar_tref ~ temp + aou + silicate + phosphate 2062 2.2370247 9184.1277 8.281478 1982-1999 –> 2000-2010 4.1699136 23920.5115
Indo-Pacific (27.95,28.05] cstar_tref ~ temp + aou + silicate + phosphate + phosphate_star 2062 2.1521797 9026.6708 7.877935 1982-1999 –> 2000-2010 4.0278393 23552.0825
Indo-Pacific (27.95,28.05] cstar_tref ~ sal + aou + nitrate + phosphate_star 1759 2.4104487 8099.0076 8.219622 2000-2010 –> 2011-2019 4.5903149 17176.3927
Indo-Pacific (27.95,28.05] cstar_tref ~ sal + aou + nitrate + silicate + phosphate_star 1759 2.4042735 8091.9835 8.383840 2000-2010 –> 2011-2019 4.5650409 17135.0772
Indo-Pacific (27.95,28.05] cstar_tref ~ sal + aou + silicate + phosphate + phosphate_star 1759 2.4709066 8188.1563 8.414649 2000-2010 –> 2011-2019 4.6468297 17260.0749
Indo-Pacific (27.95,28.05] cstar_tref ~ temp + aou + phosphate + phosphate_star 1759 2.4660466 8179.2299 8.996953 2000-2010 –> 2011-2019 4.6844172 17328.8242
Indo-Pacific (27.95,28.05] cstar_tref ~ temp + aou + silicate + phosphate + phosphate_star 1759 2.4261389 8123.8329 8.758843 2000-2010 –> 2011-2019 4.5783186 17150.5037
Indo-Pacific (28.05,28.1] cstar_tref ~ sal + aou + silicate + phosphate 1460 1.9413556 6092.3890 8.704942 1982-1999 –> 2000-2010 3.5619250 15818.3549
Indo-Pacific (28.05,28.1] cstar_tref ~ sal + aou + silicate + phosphate + phosphate_star 1460 1.8501241 5953.8384 9.254259 1982-1999 –> 2000-2010 3.4465693 15605.1936
Indo-Pacific (28.05,28.1] cstar_tref ~ sal + silicate + phosphate + phosphate_star 1460 1.9448354 6097.6184 8.852501 1982-1999 –> 2000-2010 3.5859199 15887.8414
Indo-Pacific (28.05,28.1] cstar_tref ~ temp + aou + nitrate + silicate + phosphate_star 1460 1.8656290 5978.2074 10.070772 1982-1999 –> 2000-2010 3.4750989 15671.0676
Indo-Pacific (28.05,28.1] cstar_tref ~ temp + aou + silicate + phosphate + phosphate_star 1460 1.8167075 5900.6159 9.108315 1982-1999 –> 2000-2010 3.4433166 15647.5833
Indo-Pacific (28.05,28.1] cstar_tref ~ aou + silicate + phosphate + phosphate_star 1224 2.0621585 5257.3095 10.073863 2000-2010 –> 2011-2019 3.9562304 11277.6985
Indo-Pacific (28.05,28.1] cstar_tref ~ sal + aou + silicate + phosphate + phosphate_star 1224 2.0058896 5191.5841 9.838746 2000-2010 –> 2011-2019 3.8560137 11145.4226
Indo-Pacific (28.05,28.1] cstar_tref ~ temp + aou + nitrate + silicate + phosphate_star 1224 2.0461176 5240.1928 10.585784 2000-2010 –> 2011-2019 3.9117466 11218.4002
Indo-Pacific (28.05,28.1] cstar_tref ~ temp + aou + silicate + phosphate 1224 2.0743598 5271.7510 10.122214 2000-2010 –> 2011-2019 3.9780796 11306.9760
Indo-Pacific (28.05,28.1] cstar_tref ~ temp + aou + silicate + phosphate + phosphate_star 1224 1.9585274 5133.0896 9.225019 2000-2010 –> 2011-2019 3.7752349 11033.7055
Indo-Pacific (28.1, Inf] cstar_tref ~ sal + aou + silicate + phosphate 12402 1.4118609 43762.4641 13.678755 1982-1999 –> 2000-2010 2.6886614 111420.7100
Indo-Pacific (28.1, Inf] cstar_tref ~ sal + aou + silicate + phosphate + phosphate_star 12402 1.3174986 42048.6812 16.081939 1982-1999 –> 2000-2010 2.4886350 106195.7355
Indo-Pacific (28.1, Inf] cstar_tref ~ temp + aou + nitrate + silicate + phosphate_star 12402 1.3461653 42582.5894 12.957947 1982-1999 –> 2000-2010 2.4720212 105125.9864
Indo-Pacific (28.1, Inf] cstar_tref ~ temp + aou + silicate + phosphate + phosphate_star 12402 1.3743872 43097.2215 16.873378 1982-1999 –> 2000-2010 2.6144108 109568.8040
Indo-Pacific (28.1, Inf] cstar_tref ~ temp + nitrate + silicate + phosphate_star 12402 1.5425796 45958.7954 17.365225 1982-1999 –> 2000-2010 2.8718484 115254.8897
Indo-Pacific (28.1, Inf] cstar_tref ~ sal + aou + nitrate + silicate + phosphate_star 10029 1.6342281 38326.9691 9.304087 2000-2010 –> 2011-2019 3.1380281 83656.2340
Indo-Pacific (28.1, Inf] cstar_tref ~ sal + aou + silicate + phosphate 10029 1.5705643 37527.9526 10.813075 2000-2010 –> 2011-2019 2.9824252 81290.4167
Indo-Pacific (28.1, Inf] cstar_tref ~ sal + aou + silicate + phosphate + phosphate_star 10029 1.4904452 36479.7127 12.918817 2000-2010 –> 2011-2019 2.8079438 78528.3939
Indo-Pacific (28.1, Inf] cstar_tref ~ temp + aou + nitrate + silicate + phosphate_star 10029 1.5745823 37581.2007 11.169511 2000-2010 –> 2011-2019 2.9207476 80163.7901
Indo-Pacific (28.1, Inf] cstar_tref ~ temp + aou + silicate + phosphate + phosphate_star 10029 1.5486196 37247.7156 14.043850 2000-2010 –> 2011-2019 2.9230069 80344.9370

5.3.2 per fitting unit

lm_best %>%
  group_by(basin, gamma_slab, eras) %>% 
  summarise(rmse_sum_mean = mean(rmse_sum),
            ais_sum_mean = mean(aic_sum)) %>% 
  ungroup() %>% 
  kable() %>%
  add_header_above() %>%
  kable_styling() %>%
  scroll_box(width = "100%", height = "400px")
basin gamma_slab eras rmse_sum_mean ais_sum_mean
Atlantic (-Inf,26] 1982-1999 –> 2000-2010 2.8406997 1252.746
Atlantic (-Inf,26] 2000-2010 –> 2011-2019 2.7535745 813.614
Atlantic (26,26.5] 1982-1999 –> 2000-2010 8.0431821 13656.109
Atlantic (26,26.5] 2000-2010 –> 2011-2019 7.9767325 9065.509
Atlantic (26.5,26.75] 1982-1999 –> 2000-2010 6.2893329 15806.422
Atlantic (26.5,26.75] 2000-2010 –> 2011-2019 6.7325953 10800.414
Atlantic (26.75,27] 1982-1999 –> 2000-2010 3.7832631 20868.896
Atlantic (26.75,27] 2000-2010 –> 2011-2019 4.5475486 16345.796
Atlantic (27,27.25] 1982-1999 –> 2000-2010 3.8782461 17902.215
Atlantic (27,27.25] 2000-2010 –> 2011-2019 4.3033088 13829.429
Atlantic (27.25,27.5] 1982-1999 –> 2000-2010 4.5742725 20547.523
Atlantic (27.25,27.5] 2000-2010 –> 2011-2019 5.3485496 14989.669
Atlantic (27.5,27.75] 1982-1999 –> 2000-2010 4.9952746 28321.296
Atlantic (27.5,27.75] 2000-2010 –> 2011-2019 5.7021120 21218.105
Atlantic (27.75,27.85] 1982-1999 –> 2000-2010 3.5944319 8737.894
Atlantic (27.75,27.85] 2000-2010 –> 2011-2019 3.7780980 6355.180
Atlantic (27.85,27.95] 1982-1999 –> 2000-2010 5.9444247 10785.724
Atlantic (27.85,27.95] 2000-2010 –> 2011-2019 6.6970689 8157.493
Atlantic (27.95,28.05] 1982-1999 –> 2000-2010 8.7858377 15606.154
Atlantic (27.95,28.05] 2000-2010 –> 2011-2019 8.4506366 10720.748
Atlantic (28.05,28.1] 1982-1999 –> 2000-2010 1.9889244 4913.343
Atlantic (28.05,28.1] 2000-2010 –> 2011-2019 2.1647037 3731.946
Atlantic (28.1,28.15] 1982-1999 –> 2000-2010 1.4661833 4534.141
Atlantic (28.1,28.15] 2000-2010 –> 2011-2019 1.6772251 3571.553
Atlantic (28.15,28.2] 1982-1999 –> 2000-2010 1.1096501 5819.256
Atlantic (28.15,28.2] 2000-2010 –> 2011-2019 1.3712367 4779.000
Atlantic (28.2, Inf] 1982-1999 –> 2000-2010 0.7163786 4339.572
Atlantic (28.2, Inf] 2000-2010 –> 2011-2019 0.8427383 4478.841
Indo-Pacific (-Inf,26] 1982-1999 –> 2000-2010 14.0424420 78718.385
Indo-Pacific (-Inf,26] 2000-2010 –> 2011-2019 13.5043159 53955.587
Indo-Pacific (26,26.5] 1982-1999 –> 2000-2010 9.2080015 72708.484
Indo-Pacific (26,26.5] 2000-2010 –> 2011-2019 9.5330494 50322.889
Indo-Pacific (26.5,26.75] 1982-1999 –> 2000-2010 7.8683285 56544.121
Indo-Pacific (26.5,26.75] 2000-2010 –> 2011-2019 8.2586531 39614.384
Indo-Pacific (26.75,27] 1982-1999 –> 2000-2010 7.9850791 66843.097
Indo-Pacific (26.75,27] 2000-2010 –> 2011-2019 8.9294511 47866.848
Indo-Pacific (27,27.25] 1982-1999 –> 2000-2010 7.7180410 78822.136
Indo-Pacific (27,27.25] 2000-2010 –> 2011-2019 9.0932919 58071.948
Indo-Pacific (27.25,27.5] 1982-1999 –> 2000-2010 6.5531240 66475.502
Indo-Pacific (27.25,27.5] 2000-2010 –> 2011-2019 7.5953628 49253.403
Indo-Pacific (27.5,27.75] 1982-1999 –> 2000-2010 5.5929162 62508.724
Indo-Pacific (27.5,27.75] 2000-2010 –> 2011-2019 7.2513721 48108.148
Indo-Pacific (27.75,27.85] 1982-1999 –> 2000-2010 4.6090397 22321.529
Indo-Pacific (27.75,27.85] 2000-2010 –> 2011-2019 5.7715506 17720.372
Indo-Pacific (27.85,27.95] 1982-1999 –> 2000-2010 4.9321656 29243.892
Indo-Pacific (27.85,27.95] 2000-2010 –> 2011-2019 5.9114793 22239.705
Indo-Pacific (27.95,28.05] 1982-1999 –> 2000-2010 4.1134818 23777.553
Indo-Pacific (27.95,28.05] 2000-2010 –> 2011-2019 4.6129843 17210.175
Indo-Pacific (28.05,28.1] 1982-1999 –> 2000-2010 3.5025659 15726.008
Indo-Pacific (28.05,28.1] 2000-2010 –> 2011-2019 3.8954610 11196.441
Indo-Pacific (28.1, Inf] 1982-1999 –> 2000-2010 2.6271154 109513.225
Indo-Pacific (28.1, Inf] 2000-2010 –> 2011-2019 2.9544303 80796.754

5.4 Target variable coefficients

A data frame to map the target variable is prepared.

# create table with two era belonging to one eras
eras_forward <- lm_all_fitted_wide %>%
  arrange(era) %>% 
  group_by(basin, gamma_slab, model) %>% 
  mutate(eras = paste(era, lead(era), sep = " --> ")) %>% 
  ungroup() %>% 
  select(era, eras) %>% 
  unique()

eras_backward <- lm_all_fitted_wide %>%
  arrange(era) %>% 
  group_by(basin, gamma_slab, model) %>% 
  mutate(eras = paste(lag(era), era, sep = " --> ")) %>% 
  ungroup() %>% 
  select(era, eras) %>% 
  unique()

eras_era <- full_join(eras_backward, eras_forward) %>% 
  filter(str_detect(eras, "NA") == FALSE)

# extend best model selection from eras to era
lm_best_target <- full_join(
  lm_best %>% select(basin, gamma_slab, model, eras),
  eras_era)

lm_best_target <- left_join(lm_best_target, lm_all_fitted_wide)

rm(eras_era, eras_forward, eras_backward,
   lm_all_fitted)

5.5 Plot selected model residuals

# plot model diagnostics, if activated
if (params_local$plot_all_figures == "y") {
  # mutate predictors column
  lm_best_plot <- lm_best_target %>%
    select(basin, gamma_slab, model, eras, era) %>%
    mutate(
      predictors = str_remove(model, paste(params_local$MLR_target, "~ ")),
      predictors = str_replace_all(predictors, "\\+ ", "")
    )
  
  # loop across all basins, era, gamma slabs, and MLRs
  # fit all MLR models
  for (i_basin in unique(GLODAP$basin)) {
    for (i_era in unique(GLODAP$era)) {
      #i_basin <- unique(GLODAP$basin)[1]
      #i_era   <- unique(GLODAP$era)[2]
      print(i_basin)
      print(i_era)
      
      GLODAP_basin_era <- GLODAP %>%
        filter(basin == i_basin, era == i_era)
      
      for (i_gamma_slab in unique(GLODAP_basin_era$gamma_slab)) {
        #i_gamma_slab <- unique(GLODAP_basin_era$gamma_slab)[1]
        print(i_gamma_slab)
        
        GLODAP_basin_era_slab <- GLODAP_basin_era %>%
          filter(gamma_slab == i_gamma_slab)
        
        lm_best_basin_era_slab <- lm_best_plot %>%
          filter(basin == i_basin, era == i_era, gamma_slab == i_gamma_slab)
        
        for (i_eras in unique(lm_best_basin_era_slab$eras)) {
          #i_eras <- unique(lm_best_basin_era_slab$eras)[1]
          print(i_eras)
          
          lm_best_basin_era_slab_eras <- lm_best_basin_era_slab %>%
            filter(eras == i_eras)
          
          for (i_predictors in unique(lm_best_basin_era_slab_eras$predictors)) {
            #i_predictors <- unique(lm_best_basin_era_slab$predictors)[1]
            print(i_predictors)
            # extract one model definition
            i_lm <- lm_all %>%
              filter(predictors == i_predictors) %>%
              select(lm_coeff) %>%
              pull()
            
             # fit model
          if (params_local$MLR_type == "rlm") {
            i_lm_fit <- MASS::rlm(as.formula(i_lm),
                                  data = GLODAP_basin_era_slab)
          }
          
          if (params_local$MLR_type == "lm") {
            i_lm_fit <- lm(as.formula(i_lm),
                           data = GLODAP_basin_era_slab)
          }
            
            # plot model diagnostics vs predictors
            
            p_model_predictors <- ggnostic(
              i_lm_fit,
              columnsY = c(params_local$MLR_target, ".fitted", ".resid"),
              title = paste(
                "era:",
                i_era,
                "| eras:",
                i_eras,
                "| basin:",
                i_basin,
                "| gamma slab:",
                i_gamma_slab,
                "| predictors:",
                i_predictors
              )
            )
            
            ggsave(
              plot = p_model_predictors,
              path = paste(path_version_figures, "eMLR_diagnostics/", sep = ""),
              filename = paste(
                "MLR_residuals",
                i_era,
                i_eras,
                i_basin,
                i_gamma_slab,
                i_predictors,
                "predictors.png",
                sep = "_"
              ),
              width = 14,
              height = 8
            )

            rm(p_model_predictors)
            
            
            # plot model diagnostics vs location
            
            GLODAP_basin_era_slab <- GLODAP_basin_era_slab %>%
              mutate(fitted = i_lm_fit$fitted.values,
                     residuals = i_lm_fit$residuals)
            
            GLODAP_basin_era_slab_long <- GLODAP_basin_era_slab %>% 
              pivot_longer(cols = c(params_local$MLR_target , fitted, residuals),
                           names_to = "estimate",
                           values_to = "value"
              ) %>% 
              pivot_longer(cols = c(lat, lon, depth),
                           names_to = "coordinate_type",
                           values_to = "coordinate_value"
              )

             p_model_coordinate <- GLODAP_basin_era_slab_long %>%
              ggplot(aes(coordinate_value, value)) +
              geom_bin2d() +
              scale_fill_viridis_c() +
              labs(
                title = paste(
                  "era:",
                  i_era,
                  "| eras:",
                  i_eras,
                  "| basin:",
                  i_basin,
                  "| gamma slab:",
                  i_gamma_slab,
                  "| predictors:",
                  i_predictors
                )
              ) +
              facet_grid(estimate~coordinate_type,
                         scales = "free")

            ggsave(
              plot = p_model_coordinate,
              path = paste(path_version_figures, "eMLR_diagnostics", sep = ""),
              filename = paste(
                "Location_MLR_residuals",
                i_era,
                i_eras,
                i_basin,
                i_gamma_slab,
                i_predictors,
                "predictors.png",
                sep = "_"
              ),
              width = 14,
              height = 8
            )

            rm(p_model_coordinate)
            
          }
          
        }
        
      }
    }
  }
  
  rm(
    lm_best_plot,
    lm_best_basin_era_slab,
    i_rmse,
    GLODAP_basin_era,
    GLODAP_basin_era_slab,
    i_lm,
    lm_all_fitted,
    i_basin,
    i_era,
    i_gamma_slab,
    i_predictors,
    lm_all,
    i_aic,
    i_n_predictors,
    i_resid_max
  )
  
}

Individual residual plots of the MLR models for each basin, era, eras and neutral density (gamma) slab are available at:

/nfs/kryo/work/jenmueller/emlr_cant/model/v_XXX/figures/eMLR_diagnostics/

5.6 Cant coeffcients

A data frame of coefficient offsets is prepared to facilitate the direct mapping of Cant.

# pivot long format
lm_best_long <- lm_best_target %>%
  pivot_longer(cols = starts_with("coeff_"),
               names_to = "term",
               values_to = "estimate",
               names_prefix = "coeff_")

# subtract coefficients of adjacent era  
lm_best_long <- lm_best_long %>%
  arrange(era) %>%
  group_by(basin, gamma_slab, eras, model, term) %>%
  mutate(delta_coeff = estimate - lag(estimate)) %>%
  ungroup() %>%
  arrange(basin, gamma_slab, model, term, eras) %>%
  drop_na() %>%
  select(-c(era,estimate))

# pivot back to wide format
lm_best_cant <- lm_best_long %>%
  pivot_wider(values_from = delta_coeff,
              names_from = term,
              names_prefix = "delta_coeff_",
              values_fill = 0)

5.7 Write files

lm_best_target %>%
  select(
    basin,
    gamma_slab,
    model,
    eras,
    era,
    starts_with("coeff_")
  ) %>%
  write_csv(paste(path_version_data,
                  "lm_best_target.csv",
                  sep = ""))

lm_best_cant %>%
  select(
    basin,
    gamma_slab,
    model,
    eras,
    starts_with("delta_coeff_")
  ) %>%
  write_csv(paste(path_version_data,
                  "lm_best_cant.csv",
                  sep = ""))

6 Model diagnotics

6.1 Selection criterion vs predictors

The selection criterion (aic) was plotted against the number of predictors (limited to 3 - 9).

6.1.1 All models

lm_all_fitted_wide %>%
  ggplot(aes(as.factor(n_predictors),
             !!sym(params_local$MLR_criterion),
             col = basin)) +
  geom_hline(yintercept = 10) +
  geom_boxplot() +
  facet_grid(gamma_slab~era) +
  scale_color_brewer(palette = "Set1") +
  labs(x="Number of predictors")

Version Author Date
ffda45a Donghe-Zhu 2021-03-03
691ba81 Donghe-Zhu 2021-03-03
c5e45a2 Donghe-Zhu 2021-03-03
89c3e58 Donghe-Zhu 2021-03-03
c911669 Donghe-Zhu 2021-03-03
b71c719 Donghe-Zhu 2021-03-01
13666ca Donghe-Zhu 2021-03-01
c6e60fe Donghe-Zhu 2021-03-01
7a388f7 Donghe-Zhu 2021-03-01
799e913 Donghe-Zhu 2021-03-01
66ff99f Donghe-Zhu 2021-03-01
ac9bb7a Donghe-Zhu 2021-02-28
efdc047 Donghe-Zhu 2021-02-28
e9a7418 Donghe-Zhu 2021-02-28
e152917 Donghe-Zhu 2021-02-28
287123c Donghe-Zhu 2021-02-27
54d5b5b Donghe-Zhu 2021-02-27
330f064 Donghe-Zhu 2021-02-27
adbc9bc Donghe-Zhu 2021-02-27
5937141 Donghe-Zhu 2021-02-27
4414bbf Donghe-Zhu 2021-02-27
a265efb Donghe-Zhu 2021-02-27
19edd1e Donghe-Zhu 2021-02-27
f20483f Donghe-Zhu 2021-02-26
6a2c7b3 Donghe-Zhu 2021-02-25
02b976d Donghe-Zhu 2021-02-24
354c224 Donghe-Zhu 2021-02-24
1a0a88a Donghe-Zhu 2021-02-24
57f701e Donghe-Zhu 2021-02-24
06f3149 Donghe-Zhu 2021-02-16
401eab3 Donghe-Zhu 2021-02-15
e3bba84 Donghe-Zhu 2021-02-15
5dce4b1 Donghe-Zhu 2021-02-15
4469a0c Donghe-Zhu 2021-02-13
5ae6a69 Donghe-Zhu 2021-02-10
05385dc Donghe-Zhu 2021-02-10
f791ae4 Donghe-Zhu 2021-02-09
f71ae34 Donghe-Zhu 2021-02-09
c011832 Donghe-Zhu 2021-02-09
a145fa7 Donghe-Zhu 2021-02-09
c344e42 Donghe-Zhu 2021-02-08
2f095d7 Donghe-Zhu 2021-02-07
1fad5f1 Donghe-Zhu 2021-02-07
ca03c39 Donghe-Zhu 2021-02-07
cd7c52c Donghe-Zhu 2021-02-04
bcf84f4 Donghe-Zhu 2021-02-02
a518739 Donghe-Zhu 2021-02-01
61666de Donghe-Zhu 2021-01-31
865b582 Donghe-Zhu 2021-01-31
3e68089 Donghe-Zhu 2021-01-31
ecf335c Donghe-Zhu 2021-01-31
a618965 Donghe-Zhu 2021-01-31
59e006e Donghe-Zhu 2021-01-31
a1c8f87 Donghe-Zhu 2021-01-31
ae5c18f Donghe-Zhu 2021-01-31
b50fe52 Donghe-Zhu 2021-01-31
ac99ae5 jens-daniel-mueller 2021-01-29
b5bdcaf Donghe-Zhu 2021-01-29
442010d Donghe-Zhu 2021-01-29
372adf5 Donghe-Zhu 2021-01-29
af8788e Donghe-Zhu 2021-01-29
21c91c9 Donghe-Zhu 2021-01-29
eded038 Donghe-Zhu 2021-01-29
541d4dd Donghe-Zhu 2021-01-29
6a75576 Donghe-Zhu 2021-01-28
16fba40 Donghe-Zhu 2021-01-28
12bc567 Donghe-Zhu 2021-01-27
ceed31b Donghe-Zhu 2021-01-27
342402d Donghe-Zhu 2021-01-27
5bad5c2 Donghe-Zhu 2021-01-27
61efb56 Donghe-Zhu 2021-01-25
48f638e Donghe-Zhu 2021-01-25
c1cec47 Donghe-Zhu 2021-01-25
05ffb0c Donghe-Zhu 2021-01-25
8b97165 Donghe-Zhu 2021-01-25
c569946 Donghe-Zhu 2021-01-24
a2f0d56 Donghe-Zhu 2021-01-23
28509fc Donghe-Zhu 2021-01-23
4c28e4a Donghe-Zhu 2021-01-22
24cc264 jens-daniel-mueller 2021-01-22
7891955 Donghe-Zhu 2021-01-21
d4cf1cb Donghe-Zhu 2021-01-21
1f3e5b6 jens-daniel-mueller 2021-01-20
0e7bdf1 jens-daniel-mueller 2021-01-15
4571843 jens-daniel-mueller 2021-01-14
b3564aa jens-daniel-mueller 2021-01-14
8d032c3 jens-daniel-mueller 2021-01-14
17dee1d jens-daniel-mueller 2021-01-13
7cdea0c jens-daniel-mueller 2021-01-06
fa85b93 jens-daniel-mueller 2021-01-06
e5cb81a Donghe-Zhu 2021-01-05
a499f10 Donghe-Zhu 2021-01-05
fb8a752 Donghe-Zhu 2020-12-23
8fae0b2 Donghe-Zhu 2020-12-21
c8b76b3 jens-daniel-mueller 2020-12-19

6.1.2 Best models

lm_best_target %>%
  ggplot(aes("",
             !!sym(params_local$MLR_criterion),
             col = basin)) +
  geom_hline(yintercept = 10) +
  geom_boxplot() +
  facet_grid(gamma_slab~era) +
  scale_color_brewer(palette = "Set1") +
  labs(x="Number of predictors pooled")

Version Author Date
ffda45a Donghe-Zhu 2021-03-03
691ba81 Donghe-Zhu 2021-03-03
c5e45a2 Donghe-Zhu 2021-03-03
89c3e58 Donghe-Zhu 2021-03-03
c407a50 Donghe-Zhu 2021-03-03
c911669 Donghe-Zhu 2021-03-03
b71c719 Donghe-Zhu 2021-03-01
13666ca Donghe-Zhu 2021-03-01
c6e60fe Donghe-Zhu 2021-03-01
7a388f7 Donghe-Zhu 2021-03-01
799e913 Donghe-Zhu 2021-03-01
66ff99f Donghe-Zhu 2021-03-01
ac9bb7a Donghe-Zhu 2021-02-28
efdc047 Donghe-Zhu 2021-02-28
e9a7418 Donghe-Zhu 2021-02-28
e152917 Donghe-Zhu 2021-02-28
287123c Donghe-Zhu 2021-02-27
54d5b5b Donghe-Zhu 2021-02-27
330f064 Donghe-Zhu 2021-02-27
adbc9bc Donghe-Zhu 2021-02-27
5937141 Donghe-Zhu 2021-02-27
4414bbf Donghe-Zhu 2021-02-27
a265efb Donghe-Zhu 2021-02-27
19edd1e Donghe-Zhu 2021-02-27
f20483f Donghe-Zhu 2021-02-26
6a2c7b3 Donghe-Zhu 2021-02-25
354c224 Donghe-Zhu 2021-02-24
1a0a88a Donghe-Zhu 2021-02-24
57f701e Donghe-Zhu 2021-02-24
06f3149 Donghe-Zhu 2021-02-16
401eab3 Donghe-Zhu 2021-02-15
e3bba84 Donghe-Zhu 2021-02-15
5dce4b1 Donghe-Zhu 2021-02-15
4469a0c Donghe-Zhu 2021-02-13
5ae6a69 Donghe-Zhu 2021-02-10
05385dc Donghe-Zhu 2021-02-10
f791ae4 Donghe-Zhu 2021-02-09
f71ae34 Donghe-Zhu 2021-02-09
c011832 Donghe-Zhu 2021-02-09
a145fa7 Donghe-Zhu 2021-02-09
c344e42 Donghe-Zhu 2021-02-08
2f095d7 Donghe-Zhu 2021-02-07
1fad5f1 Donghe-Zhu 2021-02-07
ca03c39 Donghe-Zhu 2021-02-07
e2ffc14 Donghe-Zhu 2021-02-05
cd7c52c Donghe-Zhu 2021-02-04
bcf84f4 Donghe-Zhu 2021-02-02
a518739 Donghe-Zhu 2021-02-01
61666de Donghe-Zhu 2021-01-31
865b582 Donghe-Zhu 2021-01-31
3e68089 Donghe-Zhu 2021-01-31
ecf335c Donghe-Zhu 2021-01-31
a618965 Donghe-Zhu 2021-01-31
59e006e Donghe-Zhu 2021-01-31
a1c8f87 Donghe-Zhu 2021-01-31
ae5c18f Donghe-Zhu 2021-01-31
b50fe52 Donghe-Zhu 2021-01-31
ac99ae5 jens-daniel-mueller 2021-01-29
b5bdcaf Donghe-Zhu 2021-01-29
442010d Donghe-Zhu 2021-01-29
372adf5 Donghe-Zhu 2021-01-29
af8788e Donghe-Zhu 2021-01-29
21c91c9 Donghe-Zhu 2021-01-29
eded038 Donghe-Zhu 2021-01-29
541d4dd Donghe-Zhu 2021-01-29
6a75576 Donghe-Zhu 2021-01-28
16fba40 Donghe-Zhu 2021-01-28
12bc567 Donghe-Zhu 2021-01-27
ceed31b Donghe-Zhu 2021-01-27
342402d Donghe-Zhu 2021-01-27
5bad5c2 Donghe-Zhu 2021-01-27
61efb56 Donghe-Zhu 2021-01-25
48f638e Donghe-Zhu 2021-01-25
c1cec47 Donghe-Zhu 2021-01-25
05ffb0c Donghe-Zhu 2021-01-25
8b97165 Donghe-Zhu 2021-01-25
c569946 Donghe-Zhu 2021-01-24
a2f0d56 Donghe-Zhu 2021-01-23
28509fc Donghe-Zhu 2021-01-23
4c28e4a Donghe-Zhu 2021-01-22
24cc264 jens-daniel-mueller 2021-01-22
7891955 Donghe-Zhu 2021-01-21
d4cf1cb Donghe-Zhu 2021-01-21
1f3e5b6 jens-daniel-mueller 2021-01-20
0e7bdf1 jens-daniel-mueller 2021-01-15
4571843 jens-daniel-mueller 2021-01-14
b3564aa jens-daniel-mueller 2021-01-14
8d032c3 jens-daniel-mueller 2021-01-14
17dee1d jens-daniel-mueller 2021-01-13
7cdea0c jens-daniel-mueller 2021-01-06
fa85b93 jens-daniel-mueller 2021-01-06
e5cb81a Donghe-Zhu 2021-01-05
a499f10 Donghe-Zhu 2021-01-05
fb8a752 Donghe-Zhu 2020-12-23
8fae0b2 Donghe-Zhu 2020-12-21
c8b76b3 jens-daniel-mueller 2020-12-19

6.2 RMSE correlation between eras

RMSE was plotted to compare the agreement for one model applied to two adjacent eras (ie check whether the same predictor combination performs equal in both eras).

6.2.1 All models

# find max rmse to scale axis
max_rmse <-
  max(c(lm_all_fitted_wide_eras$rmse,
        lm_all_fitted_wide_eras$rmse_sum - lm_all_fitted_wide_eras$rmse))

lm_all_fitted_wide_eras %>%
  ggplot(aes(rmse, rmse_sum - rmse, col = gamma_slab)) +
  geom_point() +
  scale_color_viridis_d() +
  coord_equal(xlim = c(0,max_rmse),
              ylim = c(0,max_rmse)) +
  facet_grid(eras ~ basin)

Version Author Date
ffda45a Donghe-Zhu 2021-03-03
691ba81 Donghe-Zhu 2021-03-03
c5e45a2 Donghe-Zhu 2021-03-03
89c3e58 Donghe-Zhu 2021-03-03
c911669 Donghe-Zhu 2021-03-03
13666ca Donghe-Zhu 2021-03-01
c6e60fe Donghe-Zhu 2021-03-01
7a388f7 Donghe-Zhu 2021-03-01
799e913 Donghe-Zhu 2021-03-01
66ff99f Donghe-Zhu 2021-03-01
ac9bb7a Donghe-Zhu 2021-02-28
efdc047 Donghe-Zhu 2021-02-28
e9a7418 Donghe-Zhu 2021-02-28
287123c Donghe-Zhu 2021-02-27
54d5b5b Donghe-Zhu 2021-02-27
330f064 Donghe-Zhu 2021-02-27
adbc9bc Donghe-Zhu 2021-02-27
5937141 Donghe-Zhu 2021-02-27
4414bbf Donghe-Zhu 2021-02-27
a265efb Donghe-Zhu 2021-02-27
19edd1e Donghe-Zhu 2021-02-27
f20483f Donghe-Zhu 2021-02-26
6a2c7b3 Donghe-Zhu 2021-02-25
02b976d Donghe-Zhu 2021-02-24
354c224 Donghe-Zhu 2021-02-24
1a0a88a Donghe-Zhu 2021-02-24
57f701e Donghe-Zhu 2021-02-24
06f3149 Donghe-Zhu 2021-02-16
e3bba84 Donghe-Zhu 2021-02-15
5dce4b1 Donghe-Zhu 2021-02-15
4469a0c Donghe-Zhu 2021-02-13
5ae6a69 Donghe-Zhu 2021-02-10
05385dc Donghe-Zhu 2021-02-10
f791ae4 Donghe-Zhu 2021-02-09
f71ae34 Donghe-Zhu 2021-02-09
c011832 Donghe-Zhu 2021-02-09
a145fa7 Donghe-Zhu 2021-02-09
c344e42 Donghe-Zhu 2021-02-08
2f095d7 Donghe-Zhu 2021-02-07
1fad5f1 Donghe-Zhu 2021-02-07
ca03c39 Donghe-Zhu 2021-02-07
cd7c52c Donghe-Zhu 2021-02-04
bcf84f4 Donghe-Zhu 2021-02-02
61666de Donghe-Zhu 2021-01-31
865b582 Donghe-Zhu 2021-01-31
3e68089 Donghe-Zhu 2021-01-31
ecf335c Donghe-Zhu 2021-01-31
a618965 Donghe-Zhu 2021-01-31
59e006e Donghe-Zhu 2021-01-31
a1c8f87 Donghe-Zhu 2021-01-31
ae5c18f Donghe-Zhu 2021-01-31
b50fe52 Donghe-Zhu 2021-01-31
ac99ae5 jens-daniel-mueller 2021-01-29
b5bdcaf Donghe-Zhu 2021-01-29
442010d Donghe-Zhu 2021-01-29
372adf5 Donghe-Zhu 2021-01-29
af8788e Donghe-Zhu 2021-01-29
21c91c9 Donghe-Zhu 2021-01-29
eded038 Donghe-Zhu 2021-01-29
541d4dd Donghe-Zhu 2021-01-29
6a75576 Donghe-Zhu 2021-01-28
16fba40 Donghe-Zhu 2021-01-28
12bc567 Donghe-Zhu 2021-01-27
ceed31b Donghe-Zhu 2021-01-27
342402d Donghe-Zhu 2021-01-27
5bad5c2 Donghe-Zhu 2021-01-27
61efb56 Donghe-Zhu 2021-01-25
48f638e Donghe-Zhu 2021-01-25
c1cec47 Donghe-Zhu 2021-01-25
05ffb0c Donghe-Zhu 2021-01-25
8b97165 Donghe-Zhu 2021-01-25
c569946 Donghe-Zhu 2021-01-24
a2f0d56 Donghe-Zhu 2021-01-23
28509fc Donghe-Zhu 2021-01-23
4c28e4a Donghe-Zhu 2021-01-22
24cc264 jens-daniel-mueller 2021-01-22
7891955 Donghe-Zhu 2021-01-21
d4cf1cb Donghe-Zhu 2021-01-21
1f3e5b6 jens-daniel-mueller 2021-01-20
0e7bdf1 jens-daniel-mueller 2021-01-15
4571843 jens-daniel-mueller 2021-01-14
b3564aa jens-daniel-mueller 2021-01-14
8d032c3 jens-daniel-mueller 2021-01-14
17dee1d jens-daniel-mueller 2021-01-13
7cdea0c jens-daniel-mueller 2021-01-06
fa85b93 jens-daniel-mueller 2021-01-06
e5cb81a Donghe-Zhu 2021-01-05
a499f10 Donghe-Zhu 2021-01-05
fb8a752 Donghe-Zhu 2020-12-23
8fae0b2 Donghe-Zhu 2020-12-21
c8b76b3 jens-daniel-mueller 2020-12-19
rm(max_rmse)

6.2.2 Best models

# find max rmse to scale axis
max_rmse <-
  max(c(lm_best$rmse,
        lm_best$rmse_sum - lm_best$rmse))

lm_best %>%
  ggplot(aes(rmse, rmse_sum - rmse, col = gamma_slab)) +
  geom_point() +
  scale_color_viridis_d() +
  coord_equal(xlim = c(0,max_rmse),
              ylim = c(0,max_rmse)) +
  facet_grid(eras ~ basin)

Version Author Date
ffda45a Donghe-Zhu 2021-03-03
691ba81 Donghe-Zhu 2021-03-03
c5e45a2 Donghe-Zhu 2021-03-03
89c3e58 Donghe-Zhu 2021-03-03
c407a50 Donghe-Zhu 2021-03-03
c911669 Donghe-Zhu 2021-03-03
b71c719 Donghe-Zhu 2021-03-01
13666ca Donghe-Zhu 2021-03-01
c6e60fe Donghe-Zhu 2021-03-01
7a388f7 Donghe-Zhu 2021-03-01
799e913 Donghe-Zhu 2021-03-01
66ff99f Donghe-Zhu 2021-03-01
ac9bb7a Donghe-Zhu 2021-02-28
efdc047 Donghe-Zhu 2021-02-28
e9a7418 Donghe-Zhu 2021-02-28
e152917 Donghe-Zhu 2021-02-28
287123c Donghe-Zhu 2021-02-27
54d5b5b Donghe-Zhu 2021-02-27
330f064 Donghe-Zhu 2021-02-27
adbc9bc Donghe-Zhu 2021-02-27
5937141 Donghe-Zhu 2021-02-27
4414bbf Donghe-Zhu 2021-02-27
a265efb Donghe-Zhu 2021-02-27
19edd1e Donghe-Zhu 2021-02-27
f20483f Donghe-Zhu 2021-02-26
6a2c7b3 Donghe-Zhu 2021-02-25
354c224 Donghe-Zhu 2021-02-24
1a0a88a Donghe-Zhu 2021-02-24
57f701e Donghe-Zhu 2021-02-24
06f3149 Donghe-Zhu 2021-02-16
401eab3 Donghe-Zhu 2021-02-15
e3bba84 Donghe-Zhu 2021-02-15
5dce4b1 Donghe-Zhu 2021-02-15
4469a0c Donghe-Zhu 2021-02-13
5ae6a69 Donghe-Zhu 2021-02-10
05385dc Donghe-Zhu 2021-02-10
f791ae4 Donghe-Zhu 2021-02-09
f71ae34 Donghe-Zhu 2021-02-09
c011832 Donghe-Zhu 2021-02-09
a145fa7 Donghe-Zhu 2021-02-09
c344e42 Donghe-Zhu 2021-02-08
2f095d7 Donghe-Zhu 2021-02-07
1fad5f1 Donghe-Zhu 2021-02-07
ca03c39 Donghe-Zhu 2021-02-07
e2ffc14 Donghe-Zhu 2021-02-05
cd7c52c Donghe-Zhu 2021-02-04
bcf84f4 Donghe-Zhu 2021-02-02
a518739 Donghe-Zhu 2021-02-01
61666de Donghe-Zhu 2021-01-31
865b582 Donghe-Zhu 2021-01-31
3e68089 Donghe-Zhu 2021-01-31
ecf335c Donghe-Zhu 2021-01-31
a618965 Donghe-Zhu 2021-01-31
59e006e Donghe-Zhu 2021-01-31
a1c8f87 Donghe-Zhu 2021-01-31
ae5c18f Donghe-Zhu 2021-01-31
b50fe52 Donghe-Zhu 2021-01-31
ac99ae5 jens-daniel-mueller 2021-01-29
b5bdcaf Donghe-Zhu 2021-01-29
442010d Donghe-Zhu 2021-01-29
372adf5 Donghe-Zhu 2021-01-29
af8788e Donghe-Zhu 2021-01-29
21c91c9 Donghe-Zhu 2021-01-29
eded038 Donghe-Zhu 2021-01-29
541d4dd Donghe-Zhu 2021-01-29
6a75576 Donghe-Zhu 2021-01-28
16fba40 Donghe-Zhu 2021-01-28
12bc567 Donghe-Zhu 2021-01-27
ceed31b Donghe-Zhu 2021-01-27
342402d Donghe-Zhu 2021-01-27
5bad5c2 Donghe-Zhu 2021-01-27
61efb56 Donghe-Zhu 2021-01-25
48f638e Donghe-Zhu 2021-01-25
c1cec47 Donghe-Zhu 2021-01-25
05ffb0c Donghe-Zhu 2021-01-25
8b97165 Donghe-Zhu 2021-01-25
c569946 Donghe-Zhu 2021-01-24
a2f0d56 Donghe-Zhu 2021-01-23
28509fc Donghe-Zhu 2021-01-23
4c28e4a Donghe-Zhu 2021-01-22
24cc264 jens-daniel-mueller 2021-01-22
7891955 Donghe-Zhu 2021-01-21
d4cf1cb Donghe-Zhu 2021-01-21
1f3e5b6 jens-daniel-mueller 2021-01-20
0e7bdf1 jens-daniel-mueller 2021-01-15
4571843 jens-daniel-mueller 2021-01-14
b3564aa jens-daniel-mueller 2021-01-14
8d032c3 jens-daniel-mueller 2021-01-14
17dee1d jens-daniel-mueller 2021-01-13
7cdea0c jens-daniel-mueller 2021-01-06
fa85b93 jens-daniel-mueller 2021-01-06
e5cb81a Donghe-Zhu 2021-01-05
a499f10 Donghe-Zhu 2021-01-05
fb8a752 Donghe-Zhu 2020-12-23
8fae0b2 Donghe-Zhu 2020-12-21
c8b76b3 jens-daniel-mueller 2020-12-19
rm(max_rmse)

6.3 Predictor counts

The number of models where a particular predictor was included were counted for each basin, density slab and compared eras

# calculate cases of predictor used
lm_all_stats <- lm_best_long %>% 
  filter(term != "(Intercept)",
         delta_coeff != 0) %>% 
  group_by(basin, eras, gamma_slab) %>% 
  count(term) %>% 
  ungroup() %>% 
  pivot_wider(values_from = n,
              names_from = term,
              values_fill = 0)

# print table
lm_all_stats %>%
  gt(rowname_col = "gamma_slab",
     groupname_col = c("basin", "eras")) %>% 
  summary_rows(
    groups = TRUE,
    fns = list(total = "sum")
  )
aou nitrate phosphate phosphate_star sal silicate temp
Atlantic - 1982-1999 --> 2000-2010
(-Inf,26] 5 1 4 5 3 2 2
(26,26.5] 5 3 2 4 1 4 4
(26.5,26.75] 5 1 4 4 2 5 2
(26.75,27] 5 1 4 4 1 5 3
(27,27.25] 5 2 3 4 3 5 2
(27.25,27.5] 5 4 1 3 3 5 2
(27.5,27.75] 5 1 4 3 4 3 1
(27.75,27.85] 5 2 3 3 5 4 0
(27.85,27.95] 5 0 5 5 2 3 2
(27.95,28.05] 5 2 3 5 2 3 3
(28.05,28.1] 5 0 5 5 2 3 2
(28.1,28.15] 5 1 4 5 3 4 1
(28.15,28.2] 5 5 0 4 2 3 3
(28.2, Inf] 5 5 0 3 4 3 1
total 70.00 28.00 42.00 57.00 37.00 52.00 28.00
Atlantic - 2000-2010 --> 2011-2019
(-Inf,26] 5 0 4 5 3 3 2
(26,26.5] 5 3 2 4 1 4 4
(26.5,26.75] 5 1 4 4 2 5 2
(26.75,27] 5 1 4 4 2 5 2
(27,27.25] 5 2 2 4 4 5 1
(27.25,27.5] 5 5 0 3 2 5 2
(27.5,27.75] 5 2 3 3 5 4 0
(27.75,27.85] 5 2 3 3 5 4 0
(27.85,27.95] 5 0 5 5 2 3 2
(27.95,28.05] 5 2 3 5 2 3 3
(28.05,28.1] 5 1 4 5 3 3 2
(28.1,28.15] 5 1 4 5 3 3 2
(28.15,28.2] 5 5 0 4 2 3 3
(28.2, Inf] 5 5 0 3 4 3 1
total 70.00 30.00 38.00 57.00 40.00 53.00 26.00
Indo-Pacific - 1982-1999 --> 2000-2010
(-Inf,26] 4 1 4 5 2 4 3
(26,26.5] 5 1 4 4 1 5 3
(26.5,26.75] 4 2 3 5 1 5 3
(26.75,27] 5 0 5 5 2 3 2
(27,27.25] 4 2 3 5 1 4 4
(27.25,27.5] 5 2 2 5 3 5 2
(27.5,27.75] 3 2 2 5 5 5 0
(27.75,27.85] 5 1 4 4 1 5 3
(27.85,27.95] 3 5 0 4 0 3 5
(27.95,28.05] 5 1 4 4 1 5 3
(28.05,28.1] 4 1 4 4 3 5 2
(28.1, Inf] 4 2 3 4 2 5 3
total 51.00 20.00 38.00 54.00 22.00 54.00 33.00
Indo-Pacific - 2000-2010 --> 2011-2019
(-Inf,26] 4 1 4 5 2 4 3
(26,26.5] 5 1 4 4 1 5 3
(26.5,26.75] 4 2 3 5 1 5 3
(26.75,27] 5 0 5 5 2 3 2
(27,27.25] 5 1 4 5 1 4 3
(27.25,27.5] 5 2 2 5 3 5 2
(27.5,27.75] 4 2 2 5 4 5 1
(27.75,27.85] 4 2 3 5 3 4 2
(27.85,27.95] 4 5 0 3 0 3 5
(27.95,28.05] 5 2 3 5 3 3 2
(28.05,28.1] 5 1 4 4 1 5 3
(28.1, Inf] 5 2 3 4 3 5 2
total 55.00 21.00 37.00 55.00 24.00 51.00 31.00

6.4 RMSE alternatives

AIC is an alternative criterion to RMSE to judge model quality, but not (yet) taken into account.

lm_all_fitted_wide_eras %>% 
  ggplot(aes(rmse, aic, col = gamma_slab)) +
  geom_point() +
  scale_color_viridis_d() +
  facet_grid(eras~basin)

Version Author Date
ffda45a Donghe-Zhu 2021-03-03
691ba81 Donghe-Zhu 2021-03-03
c5e45a2 Donghe-Zhu 2021-03-03
89c3e58 Donghe-Zhu 2021-03-03
c911669 Donghe-Zhu 2021-03-03
13666ca Donghe-Zhu 2021-03-01
c6e60fe Donghe-Zhu 2021-03-01
7a388f7 Donghe-Zhu 2021-03-01
799e913 Donghe-Zhu 2021-03-01
66ff99f Donghe-Zhu 2021-03-01
ac9bb7a Donghe-Zhu 2021-02-28
efdc047 Donghe-Zhu 2021-02-28
e9a7418 Donghe-Zhu 2021-02-28
287123c Donghe-Zhu 2021-02-27
54d5b5b Donghe-Zhu 2021-02-27
330f064 Donghe-Zhu 2021-02-27
adbc9bc Donghe-Zhu 2021-02-27
5937141 Donghe-Zhu 2021-02-27
4414bbf Donghe-Zhu 2021-02-27
a265efb Donghe-Zhu 2021-02-27
19edd1e Donghe-Zhu 2021-02-27
f20483f Donghe-Zhu 2021-02-26
6a2c7b3 Donghe-Zhu 2021-02-25
02b976d Donghe-Zhu 2021-02-24
354c224 Donghe-Zhu 2021-02-24
1a0a88a Donghe-Zhu 2021-02-24
57f701e Donghe-Zhu 2021-02-24
06f3149 Donghe-Zhu 2021-02-16
e3bba84 Donghe-Zhu 2021-02-15
5dce4b1 Donghe-Zhu 2021-02-15
4469a0c Donghe-Zhu 2021-02-13
5ae6a69 Donghe-Zhu 2021-02-10
05385dc Donghe-Zhu 2021-02-10
f791ae4 Donghe-Zhu 2021-02-09
f71ae34 Donghe-Zhu 2021-02-09
c011832 Donghe-Zhu 2021-02-09
a145fa7 Donghe-Zhu 2021-02-09
c344e42 Donghe-Zhu 2021-02-08
2f095d7 Donghe-Zhu 2021-02-07
1fad5f1 Donghe-Zhu 2021-02-07
ca03c39 Donghe-Zhu 2021-02-07
cd7c52c Donghe-Zhu 2021-02-04
bcf84f4 Donghe-Zhu 2021-02-02
61666de Donghe-Zhu 2021-01-31
865b582 Donghe-Zhu 2021-01-31
3e68089 Donghe-Zhu 2021-01-31
ecf335c Donghe-Zhu 2021-01-31
a618965 Donghe-Zhu 2021-01-31
59e006e Donghe-Zhu 2021-01-31
a1c8f87 Donghe-Zhu 2021-01-31
ae5c18f Donghe-Zhu 2021-01-31
b50fe52 Donghe-Zhu 2021-01-31
ac99ae5 jens-daniel-mueller 2021-01-29
b5bdcaf Donghe-Zhu 2021-01-29
442010d Donghe-Zhu 2021-01-29
372adf5 Donghe-Zhu 2021-01-29
af8788e Donghe-Zhu 2021-01-29
21c91c9 Donghe-Zhu 2021-01-29
eded038 Donghe-Zhu 2021-01-29
541d4dd Donghe-Zhu 2021-01-29
6a75576 Donghe-Zhu 2021-01-28
16fba40 Donghe-Zhu 2021-01-28
12bc567 Donghe-Zhu 2021-01-27
ceed31b Donghe-Zhu 2021-01-27
342402d Donghe-Zhu 2021-01-27
5bad5c2 Donghe-Zhu 2021-01-27
61efb56 Donghe-Zhu 2021-01-25
48f638e Donghe-Zhu 2021-01-25
c1cec47 Donghe-Zhu 2021-01-25
05ffb0c Donghe-Zhu 2021-01-25
8b97165 Donghe-Zhu 2021-01-25
c569946 Donghe-Zhu 2021-01-24
a2f0d56 Donghe-Zhu 2021-01-23
28509fc Donghe-Zhu 2021-01-23
4c28e4a Donghe-Zhu 2021-01-22
24cc264 jens-daniel-mueller 2021-01-22
7891955 Donghe-Zhu 2021-01-21
d4cf1cb Donghe-Zhu 2021-01-21
1f3e5b6 jens-daniel-mueller 2021-01-20
0e7bdf1 jens-daniel-mueller 2021-01-15
4571843 jens-daniel-mueller 2021-01-14
b3564aa jens-daniel-mueller 2021-01-14
8d032c3 jens-daniel-mueller 2021-01-14
17dee1d jens-daniel-mueller 2021-01-13
7cdea0c jens-daniel-mueller 2021-01-06
fa85b93 jens-daniel-mueller 2021-01-06
e5cb81a Donghe-Zhu 2021-01-05
a499f10 Donghe-Zhu 2021-01-05
fb8a752 Donghe-Zhu 2020-12-23
8fae0b2 Donghe-Zhu 2020-12-21
c8b76b3 jens-daniel-mueller 2020-12-19
lm_best %>% 
  ggplot(aes(rmse, aic, col = gamma_slab)) +
  geom_point() +
  scale_color_viridis_d() +
  facet_grid(eras~basin)

Version Author Date
ffda45a Donghe-Zhu 2021-03-03
691ba81 Donghe-Zhu 2021-03-03
c5e45a2 Donghe-Zhu 2021-03-03
89c3e58 Donghe-Zhu 2021-03-03
c407a50 Donghe-Zhu 2021-03-03
c911669 Donghe-Zhu 2021-03-03
b71c719 Donghe-Zhu 2021-03-01
13666ca Donghe-Zhu 2021-03-01
c6e60fe Donghe-Zhu 2021-03-01
7a388f7 Donghe-Zhu 2021-03-01
799e913 Donghe-Zhu 2021-03-01
66ff99f Donghe-Zhu 2021-03-01
ac9bb7a Donghe-Zhu 2021-02-28
efdc047 Donghe-Zhu 2021-02-28
e9a7418 Donghe-Zhu 2021-02-28
e152917 Donghe-Zhu 2021-02-28
287123c Donghe-Zhu 2021-02-27
54d5b5b Donghe-Zhu 2021-02-27
330f064 Donghe-Zhu 2021-02-27
adbc9bc Donghe-Zhu 2021-02-27
5937141 Donghe-Zhu 2021-02-27
4414bbf Donghe-Zhu 2021-02-27
a265efb Donghe-Zhu 2021-02-27
19edd1e Donghe-Zhu 2021-02-27
f20483f Donghe-Zhu 2021-02-26
6a2c7b3 Donghe-Zhu 2021-02-25
354c224 Donghe-Zhu 2021-02-24
1a0a88a Donghe-Zhu 2021-02-24
57f701e Donghe-Zhu 2021-02-24
06f3149 Donghe-Zhu 2021-02-16
401eab3 Donghe-Zhu 2021-02-15
e3bba84 Donghe-Zhu 2021-02-15
5dce4b1 Donghe-Zhu 2021-02-15
4469a0c Donghe-Zhu 2021-02-13
5ae6a69 Donghe-Zhu 2021-02-10
05385dc Donghe-Zhu 2021-02-10
f791ae4 Donghe-Zhu 2021-02-09
f71ae34 Donghe-Zhu 2021-02-09
c011832 Donghe-Zhu 2021-02-09
a145fa7 Donghe-Zhu 2021-02-09
c344e42 Donghe-Zhu 2021-02-08
2f095d7 Donghe-Zhu 2021-02-07
1fad5f1 Donghe-Zhu 2021-02-07
ca03c39 Donghe-Zhu 2021-02-07
e2ffc14 Donghe-Zhu 2021-02-05
cd7c52c Donghe-Zhu 2021-02-04
bcf84f4 Donghe-Zhu 2021-02-02
a518739 Donghe-Zhu 2021-02-01
61666de Donghe-Zhu 2021-01-31
865b582 Donghe-Zhu 2021-01-31
3e68089 Donghe-Zhu 2021-01-31
ecf335c Donghe-Zhu 2021-01-31
a618965 Donghe-Zhu 2021-01-31
59e006e Donghe-Zhu 2021-01-31
a1c8f87 Donghe-Zhu 2021-01-31
ae5c18f Donghe-Zhu 2021-01-31
b50fe52 Donghe-Zhu 2021-01-31
ac99ae5 jens-daniel-mueller 2021-01-29
b5bdcaf Donghe-Zhu 2021-01-29
442010d Donghe-Zhu 2021-01-29
372adf5 Donghe-Zhu 2021-01-29
af8788e Donghe-Zhu 2021-01-29
21c91c9 Donghe-Zhu 2021-01-29
eded038 Donghe-Zhu 2021-01-29
541d4dd Donghe-Zhu 2021-01-29
6a75576 Donghe-Zhu 2021-01-28
16fba40 Donghe-Zhu 2021-01-28
12bc567 Donghe-Zhu 2021-01-27
ceed31b Donghe-Zhu 2021-01-27
342402d Donghe-Zhu 2021-01-27
5bad5c2 Donghe-Zhu 2021-01-27
61efb56 Donghe-Zhu 2021-01-25
48f638e Donghe-Zhu 2021-01-25
c1cec47 Donghe-Zhu 2021-01-25
05ffb0c Donghe-Zhu 2021-01-25
8b97165 Donghe-Zhu 2021-01-25
c569946 Donghe-Zhu 2021-01-24
a2f0d56 Donghe-Zhu 2021-01-23
28509fc Donghe-Zhu 2021-01-23
4c28e4a Donghe-Zhu 2021-01-22
24cc264 jens-daniel-mueller 2021-01-22
7891955 Donghe-Zhu 2021-01-21
d4cf1cb Donghe-Zhu 2021-01-21
1f3e5b6 jens-daniel-mueller 2021-01-20
0e7bdf1 jens-daniel-mueller 2021-01-15
4571843 jens-daniel-mueller 2021-01-14
b3564aa jens-daniel-mueller 2021-01-14
8d032c3 jens-daniel-mueller 2021-01-14
17dee1d jens-daniel-mueller 2021-01-13
7cdea0c jens-daniel-mueller 2021-01-06
fa85b93 jens-daniel-mueller 2021-01-06
e5cb81a Donghe-Zhu 2021-01-05
a499f10 Donghe-Zhu 2021-01-05
fb8a752 Donghe-Zhu 2020-12-23
8fae0b2 Donghe-Zhu 2020-12-21
c8b76b3 jens-daniel-mueller 2020-12-19

sessionInfo()
R version 4.0.3 (2020-10-10)
Platform: x86_64-pc-linux-gnu (64-bit)
Running under: openSUSE Leap 15.2

Matrix products: default
BLAS:   /usr/local/R-4.0.3/lib64/R/lib/libRblas.so
LAPACK: /usr/local/R-4.0.3/lib64/R/lib/libRlapack.so

locale:
 [1] LC_CTYPE=en_US.UTF-8       LC_NUMERIC=C              
 [3] LC_TIME=en_US.UTF-8        LC_COLLATE=en_US.UTF-8    
 [5] LC_MONETARY=en_US.UTF-8    LC_MESSAGES=en_US.UTF-8   
 [7] LC_PAPER=en_US.UTF-8       LC_NAME=C                 
 [9] LC_ADDRESS=C               LC_TELEPHONE=C            
[11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C       

attached base packages:
[1] stats     graphics  grDevices utils     datasets  methods   base     

other attached packages:
 [1] gt_0.2.2         corrr_0.4.3      broom_0.7.5      kableExtra_1.3.1
 [5] knitr_1.30       olsrr_0.5.3      GGally_2.0.0     lubridate_1.7.9 
 [9] metR_0.9.0       scico_1.2.0      patchwork_1.1.1  collapse_1.5.0  
[13] forcats_0.5.0    stringr_1.4.0    dplyr_1.0.2      purrr_0.3.4     
[17] readr_1.4.0      tidyr_1.1.2      tibble_3.0.4     ggplot2_3.3.3   
[21] tidyverse_1.3.0  workflowr_1.6.2 

loaded via a namespace (and not attached):
 [1] fs_1.5.0                 webshot_0.5.2            RColorBrewer_1.1-2      
 [4] httr_1.4.2               rprojroot_2.0.2          tools_4.0.3             
 [7] backports_1.1.10         R6_2.5.0                 nortest_1.0-4           
[10] DBI_1.1.0                colorspace_2.0-0         withr_2.3.0             
[13] gridExtra_2.3            tidyselect_1.1.0         curl_4.3                
[16] compiler_4.0.3           git2r_0.27.1             cli_2.2.0               
[19] rvest_0.3.6              xml2_1.3.2               sass_0.2.0              
[22] labeling_0.4.2           scales_1.1.1             checkmate_2.0.0         
[25] goftest_1.2-2            digest_0.6.27            foreign_0.8-80          
[28] rmarkdown_2.5            rio_0.5.16               pkgconfig_2.0.3         
[31] htmltools_0.5.0          highr_0.8                dbplyr_1.4.4            
[34] rlang_0.4.10             readxl_1.3.1             rstudioapi_0.13         
[37] farver_2.0.3             generics_0.1.0           jsonlite_1.7.2          
[40] zip_2.1.1                car_3.0-10               magrittr_2.0.1          
[43] Matrix_1.2-18            Rcpp_1.0.5               munsell_0.5.0           
[46] fansi_0.4.1              abind_1.4-5              lifecycle_0.2.0         
[49] stringi_1.5.3            whisker_0.4              yaml_2.2.1              
[52] carData_3.0-4            plyr_1.8.6               grid_4.0.3              
[55] blob_1.2.1               parallel_4.0.3           promises_1.1.1          
[58] crayon_1.3.4             lattice_0.20-41          haven_2.3.1             
[61] hms_0.5.3                pillar_1.4.7             reprex_0.3.0            
[64] glue_1.4.2               evaluate_0.14            RcppArmadillo_0.10.1.2.2
[67] data.table_1.13.6        modelr_0.1.8             vctrs_0.3.6             
[70] httpuv_1.5.4             cellranger_1.1.0         gtable_0.3.0            
[73] reshape_0.8.8            assertthat_0.2.1         xfun_0.20               
[76] openxlsx_4.2.3           RcppEigen_0.3.3.9.1      later_1.1.0.1           
[79] viridisLite_0.3.0        ellipsis_0.3.1           here_1.0.1