• Read data
  • Define labels and breaks
  • Functions
    • Seasonality plots
    • fCO2 decomposition
    • Flux attribution
  • Maps
    • Annual means
      • 2023 anomaly
    • Monthly means
      • 2023 anomaly
      • fCO2 decomposition
      • Flux attribution
  • Hovmoeller plots
    • Monthly means
      • Anomalies
  • Regional means and integrals
    • Annual anomalies
    • Seasonal anomalies
      • Annual mean trends
      • Monthly mean trends
  • Flux anomaly correlation
    • Annual anomalies
      • Absolute
    • Monthly anomalies
      • Absolute
    • pCO2 decomposition
  • Flux attribution
    • Seasonal
    • Annual

Last updated: 2024-05-21

Checks: 7 0

Knit directory: heatwave_co2_flux_2023/analysis/

This reproducible R Markdown analysis was created with workflowr (version 1.7.0). The Checks tab describes the reproducibility checks that were applied when the results were created. The Past versions tab lists the development history.


Great! Since the R Markdown file has been committed to the Git repository, you know the exact version of the code that produced these results.

Great job! The global environment was empty. Objects defined in the global environment can affect the analysis in your R Markdown file in unknown ways. For reproduciblity it’s best to always run the code in an empty environment.

The command set.seed(20240307) was run prior to running the code in the R Markdown file. Setting a seed ensures that any results that rely on randomness, e.g. subsampling or permutations, are reproducible.

Great job! Recording the operating system, R version, and package versions is critical for reproducibility.

Nice! There were no cached chunks for this analysis, so you can be confident that you successfully produced the results during this run.

Great job! Using relative paths to the files within your workflowr project makes it easier to run your code on other machines.

Great! You are using Git for version control. Tracking code development and connecting the code version to the results is critical for reproducibility.

The results in this page were generated with repository version 5af03d1. See the Past versions tab to see a history of the changes made to the R Markdown and HTML files.

Note that you need to be careful to ensure that all relevant files for the analysis have been committed to Git prior to generating the results (you can use wflow_publish or wflow_git_commit). workflowr only checks the R Markdown file, but you know if there are other scripts or data files that it depends on. Below is the status of the Git repository when the results were generated:


Ignored files:
    Ignored:    .Rhistory
    Ignored:    .Rproj.user/
    Ignored:    data/

Unstaged changes:
    Modified:   analysis/child/pCO2_product_synopsis.Rmd
    Modified:   code/Workflowr_project_managment.R

Note that any generated files, e.g. HTML, png, CSS, etc., are not included in this status report because it is ok for generated content to have uncommitted changes.


These are the previous versions of the repository in which changes were made to the R Markdown (analysis/pco2_product_synopsis_2023.Rmd) and HTML (docs/pco2_product_synopsis_2023.html) files. If you’ve configured a remote Git repository (see ?wflow_git_remote), click on the hyperlinks in the table below to view the files as they were in that past version.

File Version Author Date Message
html 5af03d1 jens-daniel-mueller 2024-05-17 Build site.
html a29d870 jens-daniel-mueller 2024-05-16 Build site.
html dbc1fc6 jens-daniel-mueller 2024-05-16 Build site.
html aea0b99 jens-daniel-mueller 2024-05-16 Build site.
html 3310cf6 jens-daniel-mueller 2024-05-16 Build site.
html fcd728c jens-daniel-mueller 2024-05-16 Build site.
html 960912c jens-daniel-mueller 2024-05-16 Build site.
html b7d0689 jens-daniel-mueller 2024-05-15 Build site.
html 00ad9d5 jens-daniel-mueller 2024-05-15 Build site.
html 47f8868 jens-daniel-mueller 2024-05-15 Build site.
html 589243f jens-daniel-mueller 2024-05-15 Build site.
html 1e4c153 jens-daniel-mueller 2024-05-14 Build site.
html 009791f jens-daniel-mueller 2024-05-14 Build site.
html 8c96de4 jens-daniel-mueller 2024-05-08 Build site.
html 3fea035 jens-daniel-mueller 2024-05-08 Build site.
html 4b81eaf jens-daniel-mueller 2024-05-07 Build site.
html 60abdac jens-daniel-mueller 2024-04-23 Build site.
html e44a62b jens-daniel-mueller 2024-04-23 Build site.
html 7f9c687 jens-daniel-mueller 2024-04-23 Build site.
html 1ff6eb0 jens-daniel-mueller 2024-04-22 Build site.
html 9ecd92e jens-daniel-mueller 2024-04-22 Build site.
html 231f7cd jens-daniel-mueller 2024-04-17 Build site.
html f6e9707 jens-daniel-mueller 2024-04-17 Build site.
html ce4e2a6 jens-daniel-mueller 2024-04-17 Build site.
html a5911f0 jens-daniel-mueller 2024-04-17 Build site.
html 6709afa jens-daniel-mueller 2024-04-12 Build site.
html 58e3680 jens-daniel-mueller 2024-04-11 Build site.
html 238d229 jens-daniel-mueller 2024-04-11 Build site.
html dfcf790 jens-daniel-mueller 2024-04-11 Build site.
html 139bc97 jens-daniel-mueller 2024-04-11 manual deletion of files
html 2c6f421 jens-daniel-mueller 2024-04-11 Build site.
html 37ccea4 jens-daniel-mueller 2024-04-08 Build site.
html 19f40c9 jens-daniel-mueller 2024-04-05 Build site.
Rmd 2336de2 jens-daniel-mueller 2024-04-05 ensemble mean estimates added
html 2793f67 jens-daniel-mueller 2024-04-05 Build site.
html 69dc18c jens-daniel-mueller 2024-04-04 Build site.
html c9d994c jens-daniel-mueller 2024-04-04 Build site.
html 40cb158 jens-daniel-mueller 2024-04-03 Build site.
html 7bb6113 jens-daniel-mueller 2024-04-03 Build site.
Rmd 7be0147 jens-daniel-mueller 2024-04-03 trend maps included
html 27b48a1 jens-daniel-mueller 2024-04-03 Build site.
html a83c8fc jens-daniel-mueller 2024-04-03 Build site.
Rmd 53c89bd jens-daniel-mueller 2024-04-03 rebuild entire website incl 2022 anomalies

center <- -160
boundary <- center + 180
target_crs <- paste0("+proj=robin +over +lon_0=", center)
# target_crs <- paste0("+proj=eqearth +over +lon_0=", center)
# target_crs <- paste0("+proj=eqearth +lon_0=", center)
# target_crs <- paste0("+proj=igh_o +lon_0=", center)

worldmap <- ne_countries(scale = 'small',
                         type = 'map_units',
                         returnclass = 'sf')

worldmap <- worldmap %>% st_break_antimeridian(lon_0 = center)
worldmap_trans <- st_transform(worldmap, crs = target_crs)

# ggplot() +
#   geom_sf(data = worldmap_trans)

coastline <- ne_coastline(scale = 'small', returnclass = "sf")
coastline <- st_break_antimeridian(coastline, lon_0 = 200)
coastline_trans <- st_transform(coastline, crs = target_crs)

# ggplot() +
#   geom_sf(data = worldmap_trans, fill = "grey", col="grey") +
#   geom_sf(data = coastline_trans)


bbox <- st_bbox(c(xmin = -180, xmax = 180, ymax = 65, ymin = -78), crs = st_crs(4326))
bbox <- st_as_sfc(bbox)
bbox_trans <- st_break_antimeridian(bbox, lon_0 = center)

bbox_graticules <- st_graticule(
  x = bbox_trans,
  crs = st_crs(bbox_trans),
  datum = st_crs(bbox_trans),
  lon = c(20, 20.001),
  lat = c(-78,65),
  ndiscr = 1e3,
  margin = 0.001
)

bbox_graticules_trans <- st_transform(bbox_graticules, crs = target_crs)
rm(worldmap, coastline, bbox, bbox_trans)

# ggplot() +
#   geom_sf(data = worldmap_trans, fill = "grey", col="grey") +
#   geom_sf(data = coastline_trans) +
#   geom_sf(data = bbox_graticules_trans)

lat_lim <- ext(bbox_graticules_trans)[c(3,4)]*1.002
lon_lim <- ext(bbox_graticules_trans)[c(1,2)]*1.005

# ggplot() +
#   geom_sf(data = worldmap_trans, fill = "grey90", col = "grey90") +
#   geom_sf(data = coastline_trans) +
#   geom_sf(data = bbox_graticules_trans, linewidth = 1) +
#   coord_sf(crs = target_crs,
#            ylim = lat_lim,
#            xlim = lon_lim,
#            expand = FALSE) +
#   theme(
#     panel.border = element_blank(),
#     axis.text = element_blank(),
#     axis.ticks = element_blank()
#   )

latitude_graticules <- st_graticule(
  x = bbox_graticules,
  crs = st_crs(bbox_graticules),
  datum = st_crs(bbox_graticules),
  lon = c(20, 20.001),
  lat = c(-60,-30,0,30,60),
  ndiscr = 1e3,
  margin = 0.001
)

latitude_graticules_trans <- st_transform(latitude_graticules, crs = target_crs)

latitude_labels <- data.frame(lat_label = c("60°N","30°N","Eq.","30°S","60°S"),
                 lat = c(60,30,0,-30,-60)-4, lon = c(35)-c(0,2,4,2,0))

latitude_labels <- st_as_sf(x = latitude_labels,
               coords = c("lon", "lat"),
               crs = "+proj=longlat")

latitude_labels_trans <- st_transform(latitude_labels, crs = target_crs)

# ggplot() +
#   geom_sf(data = worldmap_trans, fill = "grey", col = "grey") +
#   geom_sf(data = coastline_trans) +
#   geom_sf(data = bbox_graticules_trans) +
#   geom_sf(data = latitude_graticules_trans,
#           col = "grey60",
#           linewidth = 0.2) +
#   geom_sf_text(data = latitude_labels_trans,
#                aes(label = lat_label),
#                size = 3,
#                col = "grey60")
pCO2_product_synopsis <-
  knitr::knit_expand(
    file = here::here("analysis/child/pCO2_product_synopsis.Rmd"),
    year_anom = 2023
  )

Read data

files <- list.files(here::here("data/"),
                    pattern = paste0(2023,"_anomaly_map_annual.csv"),
                    full.names = TRUE)

pco2_product_coarse_annual_regression <-
  read_csv(files,
           id = "product")

pco2_product_coarse_annual_regression <-
  pco2_product_coarse_annual_regression %>% 
  mutate(product = str_extract(product, "OceanSODA|SOM_FFN|CMEMS|NRT_fco2residual|ETHZ_CESM|FESOM-REcoM"))
files <- list.files(here::here("data/"),
                    pattern = paste0(2023,"_anomaly_map_monthly.csv"),
                    full.names = TRUE)

pco2_product_coarse_monthly_regression <-
  read_csv(files,
           id = "product")

pco2_product_coarse_monthly_regression <-
  pco2_product_coarse_monthly_regression %>% 
  mutate(product = str_extract(product, "OceanSODA|SOM_FFN|CMEMS|NRT_fco2residual|ETHZ_CESM|FESOM-REcoM"))
files <- list.files(here::here("data/"),
                    pattern = paste0(2023,"_anomaly_hovmoeller_monthly.csv"),
                    full.names = TRUE)

pco2_product_hovmoeller_monthly_regression <-
  read_csv(files,
           id = "product")

pco2_product_hovmoeller_monthly_regression <-
  pco2_product_hovmoeller_monthly_regression %>% 
  mutate(product = str_extract(product, "OceanSODA|SOM_FFN|CMEMS|NRT_fco2residual|ETHZ_CESM|FESOM-REcoM"))
files <- list.files(here::here("data/"),
                    pattern = paste0(2023,"_biome_annual_regression.csv"),
                    full.names = TRUE)

pco2_product_annual_regression <-
  read_csv(files,
           id = "product")

pco2_product_annual_regression <-
  pco2_product_annual_regression %>% 
  mutate(product = str_extract(product, "OceanSODA|SOM_FFN|CMEMS|NRT_fco2residual|ETHZ_CESM|FESOM-REcoM"))
files <- list.files(here::here("data/"),
                    pattern = paste0(2023,"_biome_annual_detrended.csv"),
                    full.names = TRUE)

pco2_product_annual_detrended <-
  read_csv(files,
           id = "product")

pco2_product_annual_detrended <-
  pco2_product_annual_detrended %>% 
  mutate(product = str_extract(product, "OceanSODA|SOM_FFN|CMEMS|NRT_fco2residual|ETHZ_CESM|FESOM-REcoM"))
files <- list.files(here::here("data/"),
                    pattern = paste0(2023,"_biome_monthly_regression.csv"),
                    full.names = TRUE)

pco2_product_monthly_regression <-
  read_csv(files,
           id = "product")

pco2_product_monthly_regression <-
  pco2_product_monthly_regression %>% 
  mutate(product = str_extract(product, "OceanSODA|SOM_FFN|CMEMS|NRT_fco2residual|ETHZ_CESM|FESOM-REcoM"))
files <- list.files(here::here("data/"),
                    pattern = paste0(2023,"_biome_monthly_detrended.csv"),
                    full.names = TRUE)

pco2_product_monthly_detrended <-
  read_csv(files,
           id = "product")

pco2_product_monthly_detrended <-
  pco2_product_monthly_detrended %>% 
  mutate(product = str_extract(product, "OceanSODA|SOM_FFN|CMEMS|NRT_fco2residual|ETHZ_CESM|FESOM-REcoM"))
map <-
  read_rds(here::here("data/map.rds"))

key_biomes <-
  read_rds(here::here("data/key_biomes.rds"))

super_biomes <-
  read_rds(here::here("data/super_biomes.rds"))

biome_mask <-
  read_rds(here::here("data/biome_mask.rds"))

biome_mask <-
  bind_rows(
    biome_mask,
    biome_mask %>% mutate(biome = "Global")
  )
name_core <- c("fgco2", "fgco2_int", "fgco2_hov",
               "sfco2", "atm_fco2", "dfco2",
               "kw_sol", "temperature")
# pco2_product_annual_regression %>%
#   distinct(product,name) %>%
#   print(n=50)


pco2_product_coarse_annual_regression <-
  pco2_product_coarse_annual_regression %>%
  mutate(name = factor(name, levels = name_core)) %>% 
  filter(!is.na(name))

pco2_product_coarse_monthly_regression <-
  pco2_product_coarse_monthly_regression %>%
  mutate(name = factor(name, levels = name_core)) %>% 
  filter(!is.na(name))

pco2_product_hovmoeller_monthly_regression <-
  pco2_product_hovmoeller_monthly_regression %>%
  mutate(name = factor(name, levels = name_core)) %>% 
  filter(!is.na(name))


pco2_product_annual_detrended <- pco2_product_annual_detrended %>%
  mutate(name = factor(name, levels = name_core)) %>% 
  filter(!is.na(name))

pco2_product_annual_regression <- pco2_product_annual_regression %>%
  mutate(name = factor(name, levels = name_core)) %>% 
  filter(!is.na(name))


pco2_product_monthly_detrended <- pco2_product_monthly_detrended %>%
  mutate(name = factor(name, levels = name_core)) %>% 
  filter(!is.na(name))

pco2_product_monthly_regression <- pco2_product_monthly_regression %>%
  mutate(name = factor(name, levels = name_core)) %>% 
  filter(!is.na(name))
pco2_product_list <- c(#"CMEMS",
                       "NRT_fco2residual",
                       "OceanSODA",
                       "SOM_FFN")

Define labels and breaks

labels_breaks <- function(i_name) {
  
  if (i_name == "dco2") {
    i_legend_title <- "ΔpCO<sub>2</sub><br>(µatm)"
  }
  
  if (i_name == "dfco2") {
    i_legend_title <- "ΔfCO<sub>2</sub><br>(µatm)"
  }
  
  if (i_name == "atm_co2") {
    i_legend_title <- "pCO<sub>2,atm</sub><br>(µatm)"
  }
  
  if (i_name == "atm_fco2") {
    i_legend_title <- "fCO<sub>2,atm</sub><br>(µatm)"
  }
  
  if (i_name == "sol") {
    i_legend_title <- "K<sub>0</sub><br>(mol m<sup>-3</sup> µatm<sup>-1</sup>)"
  }
  
  if (i_name == "kw") {
    i_legend_title <- "k<sub>w</sub><br>(m yr<sup>-1</sup>)"
  }
  
  if (i_name == "kw_sol") {
    i_legend_title <- "k<sub>w</sub> K<sub>0</sub><br>(mol yr<sup>-1</sup> m<sup>-2</sup> µatm<sup>-1</sup>)"
  }
  
  if (i_name == "spco2") {
    i_legend_title <- "pCO<sub>2,ocean</sub><br>(µatm)"
  }
  
  if (i_name == "sfco2") {
    i_legend_title <- "fCO<sub>2,ocean</sub><br>(µatm)"
  }
  
  if (i_name == "sfco2_total") {
    i_legend_title <- "total"
  }
  
  if (i_name == "sfco2_therm") {
    i_legend_title <- "thermal"
  }
  
  if (i_name == "sfco2_nontherm") {
    i_legend_title <- "non-thermal"
  }
  
  if (i_name == "fgco2") {
    i_legend_title <- "FCO<sub>2</sub><br>(mol m<sup>-2</sup> yr<sup>-1</sup>)"
  }
  
  if (i_name == "fgco2_hov") {
    i_legend_title <- "FCO<sub>2</sub><br>(PgC deg<sup>-1</sup> yr<sup>-1</sup>)"
  }
  
  if (i_name == "fgco2_int") {
    i_legend_title <- "FCO<sub>2</sub><br>(PgC yr<sup>-1</sup>)"
  }
  
  if (i_name == "temperature") {
    i_legend_title <- "SST<br>(°C)"
  }
  
  if (i_name == "salinity") {
    i_legend_title <- "SSS"
  }
  
  if (i_name == "chl") {
    i_legend_title <- "lg(Chl-a)<br>(lg(mg m<sup>-3</sup>))"
  }
  
  if (i_name == "mld") {
    i_legend_title <- "lg(MLD)<br>(lg(m))"
  }
  
  if (i_name == "press") {
    i_legend_title <- "pressure<sub>atm</sub><br>(Pa)"
  }
  
  if (i_name == "wind") {
    i_legend_title <- "Wind <br>(m sec<sup>-1</sup>)"
  }
  
  if (i_name == "SSH") {
    i_legend_title <- "SSH <br>(m)"
  }
  
  if (i_name == "fice") {
    i_legend_title <- "Sea ice <br>(%)"
  }
  
    
  if (i_name == "resid_fgco2") {
    i_legend_title <-
      "Observed"
  }
    
  if (i_name == "resid_fgco2_dfco2") {
    i_legend_title <-
      "ΔfCO<sub>2</sub>"
  }
    
  if (i_name == "resid_fgco2_kw_sol") {
    i_legend_title <-
      "k<sub>w</sub> K<sub>0</sub>"
  }
    
  if (i_name == "resid_fgco2_dfco2_kw_sol") {
    i_legend_title <-
      "k<sub>w</sub> K<sub>0</sub> X ΔfCO<sub>2</sub>"
  }
    
  if (i_name == "resid_fgco2_sum") {
    i_legend_title <-
      "∑"
  }
    
  if (i_name == "resid_fgco2_offset") {
    i_legend_title <-
      "Obs. - ∑"
  }
  
  all_labels_breaks <- lst(i_legend_title)
  
  return(all_labels_breaks)
  
}

x_axis_labels <-
  c(
    "dco2" = labels_breaks("dco2")$i_legend_title,
    "dfco2" = labels_breaks("dfco2")$i_legend_title,
    "atm_co2" = labels_breaks("atm_co2")$i_legend_title,
    "atm_fco2" = labels_breaks("atm_fco2")$i_legend_title,
    "sol" = labels_breaks("sol")$i_legend_title,
    "kw" = labels_breaks("kw")$i_legend_title,
    "kw_sol" = labels_breaks("kw_sol")$i_legend_title,
    "spco2" = labels_breaks("spco2")$i_legend_title,
    "sfco2" = labels_breaks("sfco2")$i_legend_title,
    "sfco2_total" = labels_breaks("sfco2_total")$i_legend_title,
    "sfco2_therm" = labels_breaks("sfco2_therm")$i_legend_title,
    "sfco2_nontherm" = labels_breaks("sfco2_nontherm")$i_legend_title,
    "fgco2" = labels_breaks("fgco2")$i_legend_title,
    "fgco2_hov" = labels_breaks("fgco2_hov")$i_legend_title,
    "fgco2_int" = labels_breaks("fgco2_int")$i_legend_title,
    "temperature" = labels_breaks("temperature")$i_legend_title,
    "salinity" = labels_breaks("salinity")$i_legend_title,
    "chl" = labels_breaks("chl")$i_legend_title,
    "mld" = labels_breaks("mld")$i_legend_title,
    "press" = labels_breaks("press")$i_legend_title,
    "wind" = labels_breaks("wind")$i_legend_title,
    "SSH" = labels_breaks("SSH")$i_legend_title,
    "fice" = labels_breaks("fice")$i_legend_title,
    "resid_fgco2" = labels_breaks("resid_fgco2")$i_legend_title,
    "resid_fgco2_dfco2" = labels_breaks("resid_fgco2_dfco2")$i_legend_title,
    "resid_fgco2_kw_sol" = labels_breaks("resid_fgco2_kw_sol")$i_legend_title,
    "resid_fgco2_dfco2_kw_sol" = labels_breaks("resid_fgco2_dfco2_kw_sol")$i_legend_title,
    "resid_fgco2_sum" = labels_breaks("resid_fgco2_sum")$i_legend_title,
    "resid_fgco2_offset" = labels_breaks("resid_fgco2_offset")$i_legend_title
  )

Functions

Seasonality plots

p_season <- function(df, dim_row = "name", dim_col = "product", title, var = "resid") {
  
  p <- ggplot(data = df,
         aes(month, !!ensym(var)))
  
  if(var == "resid"){
      p <- p +
        geom_hline(yintercept = 0, linewidth =0.5)
    
  }
  
  p <- p +
      geom_path(data = . %>% filter(year != 2023),
                aes(group = as.factor(year),
                    col = as.factor(paste(min(year), max(year), sep = "-"))),
                alpha = 0.5) +
      geom_path(data = . %>% 
                  filter(year != 2023) %>% 
                  group_by_at(vars(month, dim_col, dim_row)) %>% 
                  summarise(!!ensym(var) := mean(!!ensym(var))),
                aes(col = "Climatological\nmean"),
                linewidth = 1) +
    scale_color_manual(values = c("grey", "black"),
                       guide = guide_legend(order = 2,
                                            reverse = TRUE)) +
    new_scale_color()+
    geom_path(data = . %>% filter(year == 2023),
                aes(col = as.factor(year)),
                linewidth = 1) +
      scale_color_manual(
        values = c("red"),
        guide = guide_legend(order = 1)
      ) +
      scale_x_continuous(breaks = seq(1, 12, 3), expand = c(0, 0)) +
      labs(title = title,
           x = "Month")
  
  if (!(is.null(dim_row) & is.null(dim_col))) {
    
    p <- p +
       facet_grid(
        as.formula(paste(dim_row, "~", dim_col)),
        scales = "free_y",
        labeller = labeller(name = x_axis_labels),
        switch = "y"
      ) +
      theme(strip.text.y.left = element_markdown(),
        strip.placement = "outside",
        strip.background.y = element_blank(),
        axis.title.y = element_blank(),
        legend.title = element_blank()
      )
    
    
  }
  
  p
  
}

fCO2 decomposition

fco2_decomposition <- function(df, ...) {
  
  group_by <- quos(...)
  # group_by <- quos(lon, lat, month)
  # group_by <- quos(biome, year, month)
  
  pco2_product_decomposition <-
    df %>%
    filter(name %in% c("temperature", "sfco2"))
  
  pco2_product_decomposition <-
    inner_join(
      pco2_product_decomposition %>%
        filter(name == "temperature") %>%
        select(-c(value, fit)) %>%
        pivot_wider(values_from = resid),
      pco2_product_decomposition %>%
        filter(name == "sfco2") %>%
        select(-c(value, resid)) %>%
        pivot_wider(values_from = fit)
    )
  
  pco2_product_decomposition <-
    pco2_product_decomposition %>%
    mutate(sfco2_therm = (sfco2 * exp(0.0423 * temperature)) - sfco2)
  
  
  pco2_product_decomposition <-
    inner_join(
      pco2_product_decomposition,
      df %>%
        filter(name %in% c("sfco2")) %>%
        select(-c(value, fit, name)) %>%
        rename(sfco2_total = resid)
    )
  
  
  pco2_product_decomposition <-
    pco2_product_decomposition %>%
    mutate(sfco2_nontherm = sfco2_total - sfco2_therm)
  
  pco2_product_decomposition <-
    pco2_product_decomposition %>%
    select(-c(temperature, sfco2)) %>%
    pivot_longer(starts_with("sfco2"),
                 values_to = "resid")
  
}

Flux attribution

flux_attribution <- function(df, ...) {
  
  group_by <- quos(...)
  # group_by <- quos(lon, lat, month)
  
  pco2_product_flux_attribution <-
    df %>%
    filter(name %in% c("dfco2", "kw_sol", "fgco2"),
           product != "CMEMS")
  
  
  pco2_product_flux_attribution <-
    inner_join(
      pco2_product_flux_attribution %>%
        select(-c(value, fit)) %>%
        pivot_wider(values_from = resid,
                    names_prefix = "resid_"),
      pco2_product_flux_attribution %>%
        select(-c(value, resid)) %>%
        filter(name != "fgco2") %>%
        pivot_wider(values_from = fit)
    )
  
    pco2_product_flux_attribution <-
    pco2_product_flux_attribution %>%
    mutate(
      resid_fgco2_dfco2 = resid_dfco2 * kw_sol,
      resid_fgco2_kw_sol = resid_kw_sol * dfco2,
      resid_fgco2_dfco2_kw_sol = resid_dfco2 * resid_kw_sol
      # resid_fgco2_sum = resid_fgco2_dfco2 + resid_fgco2_kw_sol + resid_fgco2_dfco2_kw_sol
    )
  
  # pco2_product_flux_attribution <-
  #   pco2_product_flux_attribution %>%
  #   mutate(resid_fgco2_offset = resid_fgco2 - resid_fgco2_sum)
  
  pco2_product_flux_attribution <-
    pco2_product_flux_attribution %>%
    select(product, !!!group_by, starts_with("resid_fgco2")) %>%
    pivot_longer(starts_with("resid_"),
                 values_to = "resid")
  
  
  pco2_product_flux_attribution <-
    pco2_product_flux_attribution %>%
    filter(str_detect(name, "dfco2|kw_sol")) %>% 
    mutate(name = factor(
      name,
      levels = c(
        "resid_fgco2",
        "resid_fgco2_dfco2",
        "resid_fgco2_kw_sol",
        "resid_fgco2_dfco2_kw_sol",
        "resid_fgco2_sum",
        "resid_fgco2_offset"
      )
    ))
  
}

Maps

The following maps show the anomalies of each variable in 2023 as provided through the pCO2 product. Anomalies are determined based on the predicted value of a linear regression model fit to the available data from 1990 to 2022.

Maps are first presented as annual means, and than as monthly means. Note that the 2023 predictions for the monthly maps are done individually for each month, such the mean seasonal anomaly from the annual mean is removed.

Note: The increase the computational speed, I regridded all maps to 5X5° grid.

Annual means

2023 anomaly

bivariate_map <- 
pco2_product_coarse_annual_regression %>%
  filter(year == 2023,
         name %in% c("fgco2", "temperature")) %>%
  select(product, name, lon, lat, resid) %>% 
  pivot_wider(names_from = name,
              values_from = resid) %>% 
  drop_na()

map +
  geom_tile(data = bivariate_map,
            aes(lon, lat, fill = temperature)) +
  scale_fill_continuous_divergingx(palette = "RdBu", rev = TRUE) +
  facet_wrap(~ product, ncol = 2)

Version Author Date
dbc1fc6 jens-daniel-mueller 2024-05-16
960912c jens-daniel-mueller 2024-05-16
009791f jens-daniel-mueller 2024-05-14
8c96de4 jens-daniel-mueller 2024-05-08
3fea035 jens-daniel-mueller 2024-05-08
4b81eaf jens-daniel-mueller 2024-05-07
1ff6eb0 jens-daniel-mueller 2024-04-22
6709afa jens-daniel-mueller 2024-04-12
map +
  geom_tile(data = bivariate_map,
            aes(lon, lat, fill = fgco2)) +
  scale_fill_continuous_divergingx(palette = "RdBu", rev = TRUE) +
  facet_wrap(~ product, ncol = 2)

Version Author Date
dbc1fc6 jens-daniel-mueller 2024-05-16
960912c jens-daniel-mueller 2024-05-16
009791f jens-daniel-mueller 2024-05-14
8c96de4 jens-daniel-mueller 2024-05-08
4b81eaf jens-daniel-mueller 2024-05-07
60abdac jens-daniel-mueller 2024-04-23
1ff6eb0 jens-daniel-mueller 2024-04-22
6709afa jens-daniel-mueller 2024-04-12
dim_set <- 4

bivariate_map <-
  bi_class(
    bivariate_map,
    x = temperature,
    y = fgco2,
    dim = dim_set,
    style = "quantile"
  )

bi_breaks <-
  bi_class_breaks(
    bivariate_map,
    x = temperature,
    y = fgco2,
    dim = dim_set,
    style = "quantile",
    dig_lab = 1
  )

map +
  geom_tile(data = bivariate_map,
            aes(lon, lat, fill = bi_class)) +
  bi_scale_fill(pal = "DkViolet2", dim = dim_set) +
  theme(legend.position = "none") +
  facet_wrap(~ product, ncol = 2)

Version Author Date
dbc1fc6 jens-daniel-mueller 2024-05-16
009791f jens-daniel-mueller 2024-05-14
8c96de4 jens-daniel-mueller 2024-05-08
3fea035 jens-daniel-mueller 2024-05-08
4b81eaf jens-daniel-mueller 2024-05-07
60abdac jens-daniel-mueller 2024-04-23
7f9c687 jens-daniel-mueller 2024-04-23
1ff6eb0 jens-daniel-mueller 2024-04-22
6709afa jens-daniel-mueller 2024-04-12
bi_legend(
  pal = "DkViolet2",
  xlab = labels_breaks("temperature")$i_legend_title,
  ylab = labels_breaks("fgco2")$i_legend_title,
  dim = dim_set,
  pad_width = 2,
  breaks = bi_breaks,
  arrows = FALSE
) +
  theme(
    axis.title.x = element_markdown(),
    axis.title.y = element_markdown(),
    axis.ticks = element_blank(),
    axis.text = element_text(size = 10)
  )

Version Author Date
dbc1fc6 jens-daniel-mueller 2024-05-16
7f9c687 jens-daniel-mueller 2024-04-23
1ff6eb0 jens-daniel-mueller 2024-04-22
6709afa jens-daniel-mueller 2024-04-12
# cowplot::plot_grid(
#   bi_map, bi_legend,
#   rel_heights = c(5, 3),
#   ncol = 1
# )
pco2_product_coarse_annual_regression %>%
  filter(year == 2023) %>%
  group_split(name) %>%
  # head(1) %>%
  map(
    ~ map +
      geom_tile(data = .x,
                aes(lon, lat, fill = resid)) +
      labs(title =  paste(2023, "anomaly")) +
      scale_fill_continuous_divergingx(
        palette = "RdBu",
        rev = TRUE,
        name = labels_breaks(.x %>% distinct(name)),
        limits = c(quantile(.x$resid, .01), quantile(.x$resid, .99)),
        oob = squish
      )+
      theme(legend.title = element_markdown()) +
      facet_wrap(~ product, ncol = 2)
  )
[[1]]

Version Author Date
a29d870 jens-daniel-mueller 2024-05-16
dbc1fc6 jens-daniel-mueller 2024-05-16
960912c jens-daniel-mueller 2024-05-16
009791f jens-daniel-mueller 2024-05-14
8c96de4 jens-daniel-mueller 2024-05-08
4b81eaf jens-daniel-mueller 2024-05-07
60abdac jens-daniel-mueller 2024-04-23
1ff6eb0 jens-daniel-mueller 2024-04-22
9ecd92e jens-daniel-mueller 2024-04-22
dfcf790 jens-daniel-mueller 2024-04-11
d5075c5 jens-daniel-mueller 2024-04-11
19f40c9 jens-daniel-mueller 2024-04-05

[[2]]

Version Author Date
5af03d1 jens-daniel-mueller 2024-05-17
a29d870 jens-daniel-mueller 2024-05-16
dbc1fc6 jens-daniel-mueller 2024-05-16
960912c jens-daniel-mueller 2024-05-16
009791f jens-daniel-mueller 2024-05-14
8c96de4 jens-daniel-mueller 2024-05-08
4b81eaf jens-daniel-mueller 2024-05-07
60abdac jens-daniel-mueller 2024-04-23
e44a62b jens-daniel-mueller 2024-04-23
6709afa jens-daniel-mueller 2024-04-12
dfcf790 jens-daniel-mueller 2024-04-11
d5075c5 jens-daniel-mueller 2024-04-11
19f40c9 jens-daniel-mueller 2024-04-05

[[3]]

Version Author Date
5af03d1 jens-daniel-mueller 2024-05-17
a29d870 jens-daniel-mueller 2024-05-16
dbc1fc6 jens-daniel-mueller 2024-05-16
960912c jens-daniel-mueller 2024-05-16
009791f jens-daniel-mueller 2024-05-14
8c96de4 jens-daniel-mueller 2024-05-08
3fea035 jens-daniel-mueller 2024-05-08
4b81eaf jens-daniel-mueller 2024-05-07
e44a62b jens-daniel-mueller 2024-04-23
6709afa jens-daniel-mueller 2024-04-12
dfcf790 jens-daniel-mueller 2024-04-11
d5075c5 jens-daniel-mueller 2024-04-11
19f40c9 jens-daniel-mueller 2024-04-05

[[4]]

Version Author Date
5af03d1 jens-daniel-mueller 2024-05-17
a29d870 jens-daniel-mueller 2024-05-16
dbc1fc6 jens-daniel-mueller 2024-05-16
960912c jens-daniel-mueller 2024-05-16
009791f jens-daniel-mueller 2024-05-14
8c96de4 jens-daniel-mueller 2024-05-08
4b81eaf jens-daniel-mueller 2024-05-07
e44a62b jens-daniel-mueller 2024-04-23
6709afa jens-daniel-mueller 2024-04-12
dfcf790 jens-daniel-mueller 2024-04-11
d5075c5 jens-daniel-mueller 2024-04-11
19f40c9 jens-daniel-mueller 2024-04-05

[[5]]

Version Author Date
5af03d1 jens-daniel-mueller 2024-05-17
a29d870 jens-daniel-mueller 2024-05-16
dbc1fc6 jens-daniel-mueller 2024-05-16
960912c jens-daniel-mueller 2024-05-16
589243f jens-daniel-mueller 2024-05-15
009791f jens-daniel-mueller 2024-05-14
3fea035 jens-daniel-mueller 2024-05-08
4b81eaf jens-daniel-mueller 2024-05-07
e44a62b jens-daniel-mueller 2024-04-23
6709afa jens-daniel-mueller 2024-04-12
dfcf790 jens-daniel-mueller 2024-04-11
d5075c5 jens-daniel-mueller 2024-04-11
19f40c9 jens-daniel-mueller 2024-04-05

[[6]]

Version Author Date
5af03d1 jens-daniel-mueller 2024-05-17
a29d870 jens-daniel-mueller 2024-05-16
dbc1fc6 jens-daniel-mueller 2024-05-16
960912c jens-daniel-mueller 2024-05-16
589243f jens-daniel-mueller 2024-05-15
009791f jens-daniel-mueller 2024-05-14
8c96de4 jens-daniel-mueller 2024-05-08
60abdac jens-daniel-mueller 2024-04-23
e44a62b jens-daniel-mueller 2024-04-23
6709afa jens-daniel-mueller 2024-04-12
dfcf790 jens-daniel-mueller 2024-04-11
d5075c5 jens-daniel-mueller 2024-04-11
19f40c9 jens-daniel-mueller 2024-04-05
pco2_product_coarse_annual_regression_ensemble <-
  pco2_product_coarse_annual_regression %>% 
  filter(year == 2023,
         product %in% pco2_product_list) %>%
  group_by(name, lon, lat) %>%
  summarize(
    resid_sd = sd(resid),
    resid_range = max(resid) - min(resid),
    resid_mean = mean(resid),
    n = n()
  ) %>%
  ungroup() %>%
  filter(n == length(pco2_product_list)) %>% 
  select(-n)

pco2_product_coarse_annual_regression_ensemble %>%
  mutate(product = "Ensemble mean") %>% 
  group_split(name) %>%
  # head(1) %>%
  map(
    ~ map +
      geom_tile(data = .x,
                aes(lon, lat, fill = resid_mean)) +
      geom_point(data = .x %>% filter(abs(resid_mean) < resid_sd),
                aes(lon, lat, shape = "Ensemble mean\n< StDev")) +
      labs(title =  paste(2023, "anomaly")) +
      scale_fill_continuous_divergingx(
        palette = "RdBu",
        rev = TRUE,
        name = labels_breaks(.x %>% distinct(name)),
        limits = c(quantile(.x$resid_mean, .01), quantile(.x$resid_mean, .99)),
        oob = squish
      )+
      scale_shape_manual(values = 4, name = "") +
      theme(legend.title = element_markdown()) +
      facet_wrap(~ product, ncol = 2)
  )
[[1]]

Version Author Date
a29d870 jens-daniel-mueller 2024-05-16
dbc1fc6 jens-daniel-mueller 2024-05-16

[[2]]

Version Author Date
a29d870 jens-daniel-mueller 2024-05-16
dbc1fc6 jens-daniel-mueller 2024-05-16

[[3]]

Version Author Date
a29d870 jens-daniel-mueller 2024-05-16
dbc1fc6 jens-daniel-mueller 2024-05-16

[[4]]

Version Author Date
a29d870 jens-daniel-mueller 2024-05-16
dbc1fc6 jens-daniel-mueller 2024-05-16

[[5]]

Version Author Date
a29d870 jens-daniel-mueller 2024-05-16
dbc1fc6 jens-daniel-mueller 2024-05-16

[[6]]

Version Author Date
a29d870 jens-daniel-mueller 2024-05-16
dbc1fc6 jens-daniel-mueller 2024-05-16
pco2_product_coarse_annual_regression_ensemble <-
left_join(
    pco2_product_coarse_annual_regression_ensemble,
    pco2_product_coarse_annual_regression %>% 
      filter(year == 2023,
             product %in% pco2_product_list)
  ) %>%
  mutate(`Anomaly offset` = resid - resid_mean) %>% 
  select(name, lon, lat, product, `Anomaly offset`)

pco2_product_coarse_annual_regression_ensemble_baseline <-
  pco2_product_coarse_annual_regression %>% 
  filter(year == 2023,
         product %in% pco2_product_list) %>%
  group_by(name, lon, lat) %>%
  summarize(
    fit_mean = mean(fit),
    n = n()
  ) %>%
  ungroup() %>%
  filter(n == length(pco2_product_list)) %>% 
  select(-n)

pco2_product_coarse_annual_regression_ensemble_baseline <-
left_join(
    pco2_product_coarse_annual_regression_ensemble_baseline,
    pco2_product_coarse_annual_regression %>% 
      filter(year == 2023,
             product %in% pco2_product_list)
  ) %>%
  mutate(`Baseline offset` = fit - fit_mean) %>% 
  select(name, lon, lat, product, `Baseline offset`)

full_join(
  pco2_product_coarse_annual_regression_ensemble,
  pco2_product_coarse_annual_regression_ensemble_baseline
) %>%
  pivot_longer(contains("offset"),
               names_to = "offset") %>% 
  group_split(name) %>%
  # head(1) %>%
  map(
    ~ map +
      geom_tile(data = .x,
                aes(lon, lat, fill = value)) +
      labs(title =  paste(2023, "offset from ensemble mean")) +
      scale_fill_continuous_divergingx(
        palette = "RdBu",
        rev = TRUE,
        name = labels_breaks(.x %>% distinct(name)),
        limits = c(quantile(.x$value, .01), quantile(.x$value, .99)),
        oob = squish) +
      theme(legend.title = element_markdown()) +
      facet_grid(product ~ offset)
  )
[[1]]

Version Author Date
5af03d1 jens-daniel-mueller 2024-05-17
dbc1fc6 jens-daniel-mueller 2024-05-16

[[2]]

Version Author Date
5af03d1 jens-daniel-mueller 2024-05-17
dbc1fc6 jens-daniel-mueller 2024-05-16

[[3]]

Version Author Date
5af03d1 jens-daniel-mueller 2024-05-17
dbc1fc6 jens-daniel-mueller 2024-05-16

[[4]]

Version Author Date
5af03d1 jens-daniel-mueller 2024-05-17
dbc1fc6 jens-daniel-mueller 2024-05-16

[[5]]

Version Author Date
5af03d1 jens-daniel-mueller 2024-05-17
dbc1fc6 jens-daniel-mueller 2024-05-16

[[6]]

Version Author Date
5af03d1 jens-daniel-mueller 2024-05-17
dbc1fc6 jens-daniel-mueller 2024-05-16

Monthly means

2023 anomaly

pco2_product_coarse_monthly_regression %>%
  filter(name %in% name_core) %>%
  group_split(name) %>%
  # head(1) %>%
  map(
    ~ map +
      geom_tile(data = .x,
                aes(lon, lat, fill = resid)) +
      labs(title = paste(2023, "anomaly")) +
      scale_fill_continuous_divergingx(
        palette = "RdBu",
        rev = TRUE,
        name = labels_breaks(.x %>% distinct(name)),
        limits = c(quantile(.x$resid, .01), quantile(.x$resid, .99)),
        oob = squish
      )+
      theme(legend.title = element_markdown()) +
      facet_grid(month ~ product) +
      theme(legend.position = "bottom")
  )
[[1]]

Version Author Date
a29d870 jens-daniel-mueller 2024-05-16
dbc1fc6 jens-daniel-mueller 2024-05-16
960912c jens-daniel-mueller 2024-05-16
009791f jens-daniel-mueller 2024-05-14
8c96de4 jens-daniel-mueller 2024-05-08
4b81eaf jens-daniel-mueller 2024-05-07
60abdac jens-daniel-mueller 2024-04-23
1ff6eb0 jens-daniel-mueller 2024-04-22
9ecd92e jens-daniel-mueller 2024-04-22
231f7cd jens-daniel-mueller 2024-04-17
a5911f0 jens-daniel-mueller 2024-04-17
dfcf790 jens-daniel-mueller 2024-04-11
d5075c5 jens-daniel-mueller 2024-04-11
a83c8fc jens-daniel-mueller 2024-04-03

[[2]]

Version Author Date
5af03d1 jens-daniel-mueller 2024-05-17
a29d870 jens-daniel-mueller 2024-05-16
dbc1fc6 jens-daniel-mueller 2024-05-16
960912c jens-daniel-mueller 2024-05-16
009791f jens-daniel-mueller 2024-05-14
8c96de4 jens-daniel-mueller 2024-05-08
4b81eaf jens-daniel-mueller 2024-05-07
60abdac jens-daniel-mueller 2024-04-23
dfcf790 jens-daniel-mueller 2024-04-11
d5075c5 jens-daniel-mueller 2024-04-11
a83c8fc jens-daniel-mueller 2024-04-03

[[3]]

Version Author Date
a29d870 jens-daniel-mueller 2024-05-16
dbc1fc6 jens-daniel-mueller 2024-05-16
960912c jens-daniel-mueller 2024-05-16
009791f jens-daniel-mueller 2024-05-14
8c96de4 jens-daniel-mueller 2024-05-08
3fea035 jens-daniel-mueller 2024-05-08
4b81eaf jens-daniel-mueller 2024-05-07
1ff6eb0 jens-daniel-mueller 2024-04-22
9ecd92e jens-daniel-mueller 2024-04-22
a5911f0 jens-daniel-mueller 2024-04-17
dfcf790 jens-daniel-mueller 2024-04-11
d5075c5 jens-daniel-mueller 2024-04-11
a83c8fc jens-daniel-mueller 2024-04-03

[[4]]

Version Author Date
5af03d1 jens-daniel-mueller 2024-05-17
a29d870 jens-daniel-mueller 2024-05-16
dbc1fc6 jens-daniel-mueller 2024-05-16
960912c jens-daniel-mueller 2024-05-16
009791f jens-daniel-mueller 2024-05-14
8c96de4 jens-daniel-mueller 2024-05-08
4b81eaf jens-daniel-mueller 2024-05-07
dfcf790 jens-daniel-mueller 2024-04-11
d5075c5 jens-daniel-mueller 2024-04-11
a83c8fc jens-daniel-mueller 2024-04-03

[[5]]

Version Author Date
a29d870 jens-daniel-mueller 2024-05-16
dbc1fc6 jens-daniel-mueller 2024-05-16
960912c jens-daniel-mueller 2024-05-16
589243f jens-daniel-mueller 2024-05-15
009791f jens-daniel-mueller 2024-05-14
3fea035 jens-daniel-mueller 2024-05-08
4b81eaf jens-daniel-mueller 2024-05-07
a5911f0 jens-daniel-mueller 2024-04-17
dfcf790 jens-daniel-mueller 2024-04-11
d5075c5 jens-daniel-mueller 2024-04-11
a83c8fc jens-daniel-mueller 2024-04-03

[[6]]

Version Author Date
a29d870 jens-daniel-mueller 2024-05-16
dbc1fc6 jens-daniel-mueller 2024-05-16
960912c jens-daniel-mueller 2024-05-16
589243f jens-daniel-mueller 2024-05-15
009791f jens-daniel-mueller 2024-05-14
8c96de4 jens-daniel-mueller 2024-05-08
60abdac jens-daniel-mueller 2024-04-23
dfcf790 jens-daniel-mueller 2024-04-11
d5075c5 jens-daniel-mueller 2024-04-11
a83c8fc jens-daniel-mueller 2024-04-03

fCO2 decomposition

pco2_product_coarse_monthly_fCO2_decomposition <-
  fco2_decomposition(pco2_product_coarse_monthly_regression,
                     lon, lat, month)


pco2_product_coarse_monthly_fCO2_decomposition %>%
  group_split(product) %>%
  # head(1) %>%
  map(
    ~ map +
      geom_tile(data = .x,
                aes(lon, lat, fill = resid)) +
      labs(title = paste(2023, "thermal vs non-thermal fCO2 anomaly"),
           subtitle = .x$product) +
      scale_fill_continuous_divergingx(
        palette = "RdBu",
        rev = TRUE,
        name = labels_breaks("sfco2"),
        limits = c(quantile(.x$resid, .01), quantile(.x$resid, .99)),
        oob = squish
      )+
      theme(legend.title = element_markdown(),
            legend.position = "bottom") +
      facet_grid(
        month ~ name,
        labeller = labeller(name = x_axis_labels)
      )
  )
[[1]]

Version Author Date
5af03d1 jens-daniel-mueller 2024-05-17
a29d870 jens-daniel-mueller 2024-05-16

[[2]]

Version Author Date
5af03d1 jens-daniel-mueller 2024-05-17
a29d870 jens-daniel-mueller 2024-05-16

[[3]]

Version Author Date
5af03d1 jens-daniel-mueller 2024-05-17
a29d870 jens-daniel-mueller 2024-05-16

[[4]]

Version Author Date
5af03d1 jens-daniel-mueller 2024-05-17
a29d870 jens-daniel-mueller 2024-05-16

[[5]]

Version Author Date
5af03d1 jens-daniel-mueller 2024-05-17
a29d870 jens-daniel-mueller 2024-05-16

[[6]]

Version Author Date
5af03d1 jens-daniel-mueller 2024-05-17
a29d870 jens-daniel-mueller 2024-05-16
pco2_product_coarse_monthly_fCO2_decomposition %>%
  filter(product %in% pco2_product_list) %>%
  group_by(name, lon, lat, month) %>%
  summarize(
    resid_sd = sd(resid),
    resid_mean = mean(resid),
    n = n()
  ) %>%
  ungroup() %>%
  filter(n == length(pco2_product_list)) %>% 
  select(-n) %>% 
  mutate(product = "Ensemble mean") %>% 
  group_split(product) %>%
  # head(1) %>%
  map(
    ~ map +
      geom_tile(data = .x,
                aes(lon, lat, fill = resid_mean)) +
      geom_point(data = .x %>% filter(abs(resid_mean) < resid_sd),
                 aes(lon, lat, shape = "Ensemble mean\n< StDev")) +
      labs(title = paste(2023,"thermal vs non-thermal anomaly"),
           subtitle = .x$product) +
      scale_fill_continuous_divergingx(
        palette = "RdBu",
        rev = TRUE,
        name = labels_breaks("sfco2"),
        limits = c(quantile(.x$resid_mean, .01), quantile(.x$resid_mean, .99)),
        oob = squish
      )+
      scale_shape_manual(values = 46, name = "") +
      theme(legend.title = element_markdown(),
            legend.position = "bottom") +
      facet_grid(
        month ~ name,
        labeller = labeller(name = x_axis_labels)
      )
  )
[[1]]

Version Author Date
5af03d1 jens-daniel-mueller 2024-05-17
pco2_product_coarse_annual_fCO2_decomposition <-
  pco2_product_coarse_monthly_fCO2_decomposition %>% 
  group_by(product, lat, lon, name) %>% 
  summarise(resid = mean(resid, na.rm = TRUE)) %>% 
  ungroup()

map +
  geom_tile(data = pco2_product_coarse_annual_fCO2_decomposition,
            aes(lon, lat, fill = resid)) +
  scale_fill_continuous_divergingx(
    palette = "RdBu",
    rev = TRUE,
    name = labels_breaks("sfco2"),
    limits = c(quantile(pco2_product_coarse_annual_fCO2_decomposition$resid, .01), 
               quantile(pco2_product_coarse_annual_fCO2_decomposition$resid, .99)),
    oob = squish
  )+
  labs(title = paste(2023, "annual mean fCO2 anomaly decomposition")) +
  theme(legend.title = element_markdown(),
        legend.position = "bottom") +
  facet_grid(product ~ name,
             labeller = labeller(name = x_axis_labels)) +
  theme(strip.text.x.top = element_markdown())

Version Author Date
5af03d1 jens-daniel-mueller 2024-05-17
a29d870 jens-daniel-mueller 2024-05-16
pco2_product_coarse_annual_fCO2_decomposition %>%
  filter(product %in% pco2_product_list) %>%
  group_by(name, lon, lat) %>%
  summarize(
    resid_sd = sd(resid),
    resid_mean = mean(resid),
    n = n()
  ) %>%
  ungroup() %>%
  filter(n == length(pco2_product_list)) %>% 
  select(-n) %>% 
  mutate(product = "Ensemble mean") %>% 
  group_split(product) %>%
  # head(1) %>%
  map(
    ~ map +
      geom_tile(data = .x,
                aes(lon, lat, fill = resid_mean)) +
      geom_point(data = .x %>% filter(abs(resid_mean) < resid_sd),
                 aes(lon, lat, shape = "Ensemble mean\n< StDev"))+
      labs(title = paste(2023, "fCO2 anomaly decomposition"),
           subtitle = .x$product) +
      scale_fill_continuous_divergingx(
        palette = "RdBu",
        rev = TRUE,
        name = labels_breaks("sfco2"),
        limits = c(quantile(.x$resid_mean, .01), quantile(.x$resid_mean, .99)),
        oob = squish
      ) +
      scale_shape_manual(values = 46, name = "")+
      theme(legend.title = element_markdown(),
            legend.position = "bottom") +
      facet_wrap(
         ~ name,
        labeller = labeller(name = x_axis_labels),
        ncol = 1
      ) +
      theme(strip.text.x.top = element_markdown())
  )
[[1]]

Version Author Date
a29d870 jens-daniel-mueller 2024-05-16

Flux attribution

pco2_product_coarse_monthly_flux_attribution <-
  flux_attribution(pco2_product_coarse_monthly_regression,
                   lon, lat, month)

pco2_product_coarse_monthly_flux_attribution %>%
  drop_na() %>% 
  group_split(product) %>%
  # head(1) %>%
  map(
    ~ map +
      geom_tile(data = .x,
                aes(lon, lat, fill = resid)) +
      labs(title = paste(2023, "monthly flux anomaly decomposition"),
           subtitle = .x$product) +
      scale_fill_continuous_divergingx(
        palette = "RdBu",
        rev = TRUE,
        name = labels_breaks("fgco2"),
        limits = c(quantile(.x$resid, .01), quantile(.x$resid, .99)),
        oob = squish
      ) +
      theme(legend.title = element_markdown(), 
            legend.position = "bottom") +
      facet_grid(
        month ~ name,
        labeller = labeller(name = x_axis_labels)
      ) +
      theme(
        strip.text.x.top = element_markdown()
      )
  )
[[1]]

Version Author Date
a29d870 jens-daniel-mueller 2024-05-16
dbc1fc6 jens-daniel-mueller 2024-05-16
aea0b99 jens-daniel-mueller 2024-05-16
3310cf6 jens-daniel-mueller 2024-05-16
960912c jens-daniel-mueller 2024-05-16

[[2]]

Version Author Date
a29d870 jens-daniel-mueller 2024-05-16
dbc1fc6 jens-daniel-mueller 2024-05-16
aea0b99 jens-daniel-mueller 2024-05-16
3310cf6 jens-daniel-mueller 2024-05-16
960912c jens-daniel-mueller 2024-05-16

[[3]]

Version Author Date
a29d870 jens-daniel-mueller 2024-05-16
dbc1fc6 jens-daniel-mueller 2024-05-16
aea0b99 jens-daniel-mueller 2024-05-16
3310cf6 jens-daniel-mueller 2024-05-16
960912c jens-daniel-mueller 2024-05-16

[[4]]

Version Author Date
a29d870 jens-daniel-mueller 2024-05-16
dbc1fc6 jens-daniel-mueller 2024-05-16
aea0b99 jens-daniel-mueller 2024-05-16
3310cf6 jens-daniel-mueller 2024-05-16
960912c jens-daniel-mueller 2024-05-16

[[5]]

Version Author Date
a29d870 jens-daniel-mueller 2024-05-16
dbc1fc6 jens-daniel-mueller 2024-05-16
aea0b99 jens-daniel-mueller 2024-05-16
3310cf6 jens-daniel-mueller 2024-05-16
960912c jens-daniel-mueller 2024-05-16
pco2_product_coarse_monthly_flux_attribution %>%
  drop_na() %>% 
  filter(product %in% pco2_product_list) %>%
  group_by(name, lon, lat, month) %>%
  summarize(
    resid_sd = sd(resid),
    resid_mean = mean(resid),
    n = n()
  ) %>%
  ungroup() %>%
  filter(n == length(pco2_product_list)) %>% 
  select(-n) %>% 
  mutate(product = "Ensemble mean") %>% 
  drop_na() %>% 
  group_split(product) %>%
  # head(1) %>%
  map(
    ~ map +
      geom_tile(data = .x,
                aes(lon, lat, fill = resid_mean)) +
      geom_point(data = .x %>% filter(abs(resid_mean) < resid_sd),
                 aes(lon, lat, shape = "Ensemble mean\n< StDev"))+
      labs(title = paste(2023, "flux anomaly decomposition"),
           subtitle = .x$product) +
      scale_fill_continuous_divergingx(
        palette = "RdBu",
        rev = TRUE,
        name = labels_breaks("fgco2"),
        limits = c(quantile(.x$resid_mean, .01), quantile(.x$resid_mean, .99)),
        oob = squish
      )+
      scale_shape_manual(values = 46, name = "") +
      theme(legend.title = element_markdown(),
            legend.position = "bottom") +
      facet_grid(
        month ~ name,
        labeller = labeller(name = x_axis_labels)
      ) +
      theme(strip.text.x.top = element_markdown())
  )
[[1]]

Version Author Date
a29d870 jens-daniel-mueller 2024-05-16
dbc1fc6 jens-daniel-mueller 2024-05-16
aea0b99 jens-daniel-mueller 2024-05-16
pco2_product_coarse_annual_flux_attribution <-
  pco2_product_coarse_monthly_flux_attribution %>% 
  group_by(product, lat, lon, name) %>% 
  summarise(resid = mean(resid, na.rm = TRUE)) %>% 
  ungroup()

map +
  geom_tile(data = pco2_product_coarse_annual_flux_attribution,
            aes(lon, lat, fill = resid)) +
  scale_fill_continuous_divergingx(
    palette = "RdBu",
    rev = TRUE,
    name = labels_breaks("fgco2"),
    limits = c(quantile(pco2_product_coarse_annual_flux_attribution$resid, .01, na.rm = TRUE), 
               quantile(pco2_product_coarse_annual_flux_attribution$resid, .99, na.rm = TRUE)),
    oob = squish
  )+
  labs(title = paste(2023, "annual mean flux anomaly decomposition")) +
  theme(legend.title = element_markdown(),
        legend.position = "bottom") +
  facet_grid(product ~ name,
             labeller = labeller(name = x_axis_labels)) +
  theme(strip.text.x.top = element_markdown())

Version Author Date
a29d870 jens-daniel-mueller 2024-05-16
dbc1fc6 jens-daniel-mueller 2024-05-16
pco2_product_coarse_annual_flux_attribution %>%
  filter(product %in% pco2_product_list) %>%
  group_by(name, lon, lat) %>%
  summarize(
    resid_sd = sd(resid),
    resid_mean = mean(resid),
    n = n()
  ) %>%
  ungroup() %>%
  filter(n == length(pco2_product_list)) %>% 
  select(-n) %>% 
  mutate(product = "Ensemble mean") %>% 
  drop_na() %>% 
  group_split(product) %>%
  # head(1) %>%
  map(
    ~ map +
      geom_tile(data = .x,
                aes(lon, lat, fill = resid_mean)) +
      geom_point(data = .x %>% filter(abs(resid_mean) < resid_sd),
                 aes(lon, lat, shape = "Ensemble mean\n< StDev"))+
      labs(title = paste(2023, "flux anomaly decomposition"),
           subtitle = .x$product) +
      scale_fill_continuous_divergingx(
        palette = "RdBu",
        rev = TRUE,
        name = labels_breaks("fgco2"),
        limits = c(quantile(.x$resid_mean, .01), quantile(.x$resid_mean, .99)),
        oob = squish
      )+
      scale_shape_manual(values = 46, name = "") +
      theme(legend.title = element_markdown(),
            legend.position = "bottom") +
      facet_wrap(
         ~ name,
        labeller = labeller(name = x_axis_labels),
        ncol = 1
      ) +
      theme(strip.text.x.top = element_markdown())
  )
[[1]]

Version Author Date
a29d870 jens-daniel-mueller 2024-05-16
dbc1fc6 jens-daniel-mueller 2024-05-16

Hovmoeller plots

The following Hovmoeller plots show the anomalies from the prediction of a linear/quadratic fit to the data from 1990 to 2022.

Hovmoeller plots are presented as monthly means. Note that the predictions for the monthly Hovmoeller plots are done individually for each month, such the mean seasonal anomaly from the annual mean is removed.

Monthly means

Anomalies

pco2_product_hovmoeller_monthly_regression %>%
  filter(name %in% name_core) %>%
  group_split(name) %>%
  # head(1) %>%
  map(
    ~ ggplot(data = .x,
             aes(decimal, lat, fill = resid)) +
      geom_raster() +
      scale_fill_continuous_divergingx(
        palette = "RdBu",
        rev = TRUE,
        name = labels_breaks(.x %>% distinct(name)),
        limits = c(quantile(.x$resid,.01),quantile(.x$resid,.99)),
        oob = squish
      ) +
      theme(legend.title = element_markdown()) +
      coord_cartesian(expand = 0) +
      labs(title = "Monthly mean anomalies",
           y = "Latitude") +
      theme(axis.title.x = element_blank()) +
      facet_wrap(~ product, ncol = 1)
  )
[[1]]

Version Author Date
a29d870 jens-daniel-mueller 2024-05-16
960912c jens-daniel-mueller 2024-05-16
589243f jens-daniel-mueller 2024-05-15
009791f jens-daniel-mueller 2024-05-14
8c96de4 jens-daniel-mueller 2024-05-08
4b81eaf jens-daniel-mueller 2024-05-07
60abdac jens-daniel-mueller 2024-04-23
1ff6eb0 jens-daniel-mueller 2024-04-22
9ecd92e jens-daniel-mueller 2024-04-22
231f7cd jens-daniel-mueller 2024-04-17
a5911f0 jens-daniel-mueller 2024-04-17
dfcf790 jens-daniel-mueller 2024-04-11
d5075c5 jens-daniel-mueller 2024-04-11
a83c8fc jens-daniel-mueller 2024-04-03

[[2]]

Version Author Date
a29d870 jens-daniel-mueller 2024-05-16
960912c jens-daniel-mueller 2024-05-16
589243f jens-daniel-mueller 2024-05-15
009791f jens-daniel-mueller 2024-05-14
8c96de4 jens-daniel-mueller 2024-05-08
4b81eaf jens-daniel-mueller 2024-05-07
60abdac jens-daniel-mueller 2024-04-23
dfcf790 jens-daniel-mueller 2024-04-11
d5075c5 jens-daniel-mueller 2024-04-11
a83c8fc jens-daniel-mueller 2024-04-03

[[3]]

Version Author Date
5af03d1 jens-daniel-mueller 2024-05-17
a29d870 jens-daniel-mueller 2024-05-16
960912c jens-daniel-mueller 2024-05-16
589243f jens-daniel-mueller 2024-05-15
009791f jens-daniel-mueller 2024-05-14
8c96de4 jens-daniel-mueller 2024-05-08
3fea035 jens-daniel-mueller 2024-05-08
4b81eaf jens-daniel-mueller 2024-05-07
1ff6eb0 jens-daniel-mueller 2024-04-22
9ecd92e jens-daniel-mueller 2024-04-22
a5911f0 jens-daniel-mueller 2024-04-17
dfcf790 jens-daniel-mueller 2024-04-11
d5075c5 jens-daniel-mueller 2024-04-11
a83c8fc jens-daniel-mueller 2024-04-03

[[4]]

Version Author Date
a29d870 jens-daniel-mueller 2024-05-16
960912c jens-daniel-mueller 2024-05-16
589243f jens-daniel-mueller 2024-05-15
009791f jens-daniel-mueller 2024-05-14
8c96de4 jens-daniel-mueller 2024-05-08
4b81eaf jens-daniel-mueller 2024-05-07
dfcf790 jens-daniel-mueller 2024-04-11
d5075c5 jens-daniel-mueller 2024-04-11
a83c8fc jens-daniel-mueller 2024-04-03

[[5]]

Version Author Date
5af03d1 jens-daniel-mueller 2024-05-17
a29d870 jens-daniel-mueller 2024-05-16
960912c jens-daniel-mueller 2024-05-16
589243f jens-daniel-mueller 2024-05-15
009791f jens-daniel-mueller 2024-05-14
3fea035 jens-daniel-mueller 2024-05-08
4b81eaf jens-daniel-mueller 2024-05-07
a5911f0 jens-daniel-mueller 2024-04-17
dfcf790 jens-daniel-mueller 2024-04-11
d5075c5 jens-daniel-mueller 2024-04-11
a83c8fc jens-daniel-mueller 2024-04-03

[[6]]

Version Author Date
a29d870 jens-daniel-mueller 2024-05-16
dbc1fc6 jens-daniel-mueller 2024-05-16
960912c jens-daniel-mueller 2024-05-16
589243f jens-daniel-mueller 2024-05-15
009791f jens-daniel-mueller 2024-05-14
8c96de4 jens-daniel-mueller 2024-05-08
60abdac jens-daniel-mueller 2024-04-23
dfcf790 jens-daniel-mueller 2024-04-11
d5075c5 jens-daniel-mueller 2024-04-11
a83c8fc jens-daniel-mueller 2024-04-03

[[7]]

Version Author Date
a29d870 jens-daniel-mueller 2024-05-16
dbc1fc6 jens-daniel-mueller 2024-05-16
960912c jens-daniel-mueller 2024-05-16
589243f jens-daniel-mueller 2024-05-15
009791f jens-daniel-mueller 2024-05-14
3fea035 jens-daniel-mueller 2024-05-08
4b81eaf jens-daniel-mueller 2024-05-07
231f7cd jens-daniel-mueller 2024-04-17
dfcf790 jens-daniel-mueller 2024-04-11
d5075c5 jens-daniel-mueller 2024-04-11
a83c8fc jens-daniel-mueller 2024-04-03
pco2_product_hovmoeller_monthly_regression_ensemble <-
  pco2_product_hovmoeller_monthly_regression %>% 
  group_by(name, decimal, lat) %>%
  summarize(
    resid_range = max(resid) - min(resid),
    resid_mean = mean(resid),
    n = n()
  ) %>%
  ungroup() %>%
  filter(n > 1)
  

pco2_product_hovmoeller_monthly_regression_ensemble %>%
  mutate(product = "Ensemble mean") %>% 
  group_split(name) %>%
  # head(1) %>%
  map(
    ~ ggplot(data = .x,
             aes(decimal, lat, fill = resid_mean)) +
      geom_raster() +
      scale_fill_continuous_divergingx(
        palette = "RdBu",
        rev = TRUE,
        name = labels_breaks(.x %>% distinct(name)),
        limits = c(quantile(.x$resid_mean, .01), quantile(.x$resid_mean, .99)),
        oob = squish
      ) +
      theme(legend.title = element_markdown()) +
      coord_cartesian(expand = 0) +
      labs(title = "Monthly mean anomalies",
           y = "Latitude") +
      theme(axis.title.x = element_blank()) +
      facet_wrap( ~ product, ncol = 1)
  )
[[1]]

Version Author Date
a29d870 jens-daniel-mueller 2024-05-16
960912c jens-daniel-mueller 2024-05-16
589243f jens-daniel-mueller 2024-05-15
009791f jens-daniel-mueller 2024-05-14
8c96de4 jens-daniel-mueller 2024-05-08
4b81eaf jens-daniel-mueller 2024-05-07
60abdac jens-daniel-mueller 2024-04-23
9ecd92e jens-daniel-mueller 2024-04-22
231f7cd jens-daniel-mueller 2024-04-17
a5911f0 jens-daniel-mueller 2024-04-17
dfcf790 jens-daniel-mueller 2024-04-11
d5075c5 jens-daniel-mueller 2024-04-11
37ccea4 jens-daniel-mueller 2024-04-08
19f40c9 jens-daniel-mueller 2024-04-05

[[2]]

Version Author Date
a29d870 jens-daniel-mueller 2024-05-16
960912c jens-daniel-mueller 2024-05-16
589243f jens-daniel-mueller 2024-05-15
009791f jens-daniel-mueller 2024-05-14
8c96de4 jens-daniel-mueller 2024-05-08
4b81eaf jens-daniel-mueller 2024-05-07
60abdac jens-daniel-mueller 2024-04-23
dfcf790 jens-daniel-mueller 2024-04-11
d5075c5 jens-daniel-mueller 2024-04-11
37ccea4 jens-daniel-mueller 2024-04-08

[[3]]

Version Author Date
5af03d1 jens-daniel-mueller 2024-05-17
a29d870 jens-daniel-mueller 2024-05-16
960912c jens-daniel-mueller 2024-05-16
589243f jens-daniel-mueller 2024-05-15
009791f jens-daniel-mueller 2024-05-14
8c96de4 jens-daniel-mueller 2024-05-08
3fea035 jens-daniel-mueller 2024-05-08
4b81eaf jens-daniel-mueller 2024-05-07
9ecd92e jens-daniel-mueller 2024-04-22
a5911f0 jens-daniel-mueller 2024-04-17
dfcf790 jens-daniel-mueller 2024-04-11
d5075c5 jens-daniel-mueller 2024-04-11
37ccea4 jens-daniel-mueller 2024-04-08

[[4]]

Version Author Date
a29d870 jens-daniel-mueller 2024-05-16
960912c jens-daniel-mueller 2024-05-16
589243f jens-daniel-mueller 2024-05-15
009791f jens-daniel-mueller 2024-05-14
8c96de4 jens-daniel-mueller 2024-05-08
4b81eaf jens-daniel-mueller 2024-05-07
a5911f0 jens-daniel-mueller 2024-04-17
dfcf790 jens-daniel-mueller 2024-04-11
d5075c5 jens-daniel-mueller 2024-04-11
37ccea4 jens-daniel-mueller 2024-04-08

[[5]]

Version Author Date
5af03d1 jens-daniel-mueller 2024-05-17
a29d870 jens-daniel-mueller 2024-05-16
960912c jens-daniel-mueller 2024-05-16
589243f jens-daniel-mueller 2024-05-15
009791f jens-daniel-mueller 2024-05-14
3fea035 jens-daniel-mueller 2024-05-08
4b81eaf jens-daniel-mueller 2024-05-07
231f7cd jens-daniel-mueller 2024-04-17
a5911f0 jens-daniel-mueller 2024-04-17
dfcf790 jens-daniel-mueller 2024-04-11
d5075c5 jens-daniel-mueller 2024-04-11
37ccea4 jens-daniel-mueller 2024-04-08

[[6]]

Version Author Date
a29d870 jens-daniel-mueller 2024-05-16
dbc1fc6 jens-daniel-mueller 2024-05-16
960912c jens-daniel-mueller 2024-05-16
589243f jens-daniel-mueller 2024-05-15
009791f jens-daniel-mueller 2024-05-14
8c96de4 jens-daniel-mueller 2024-05-08
3fea035 jens-daniel-mueller 2024-05-08
4b81eaf jens-daniel-mueller 2024-05-07
7f9c687 jens-daniel-mueller 2024-04-23
9ecd92e jens-daniel-mueller 2024-04-22
231f7cd jens-daniel-mueller 2024-04-17
a5911f0 jens-daniel-mueller 2024-04-17
dfcf790 jens-daniel-mueller 2024-04-11
d5075c5 jens-daniel-mueller 2024-04-11
37ccea4 jens-daniel-mueller 2024-04-08

[[7]]

Version Author Date
a29d870 jens-daniel-mueller 2024-05-16
dbc1fc6 jens-daniel-mueller 2024-05-16
960912c jens-daniel-mueller 2024-05-16
589243f jens-daniel-mueller 2024-05-15
009791f jens-daniel-mueller 2024-05-14
8c96de4 jens-daniel-mueller 2024-05-08
3fea035 jens-daniel-mueller 2024-05-08
4b81eaf jens-daniel-mueller 2024-05-07
7f9c687 jens-daniel-mueller 2024-04-23
9ecd92e jens-daniel-mueller 2024-04-22
231f7cd jens-daniel-mueller 2024-04-17
a5911f0 jens-daniel-mueller 2024-04-17
left_join(
    pco2_product_hovmoeller_monthly_regression_ensemble,
    pco2_product_hovmoeller_monthly_regression
  ) %>%
  mutate(resid_offset = resid - resid_mean) %>% 
  group_split(name) %>%
  # head(1) %>%
  map(
    ~ ggplot(data = .x,
             aes(decimal, lat, fill = resid_offset)) +
      geom_raster() +
      scale_fill_continuous_divergingx(
        palette = "RdBu",
        rev = TRUE,
        name = labels_breaks(.x %>% distinct(name)),
        limits = c(quantile(.x$resid_mean, .01), quantile(.x$resid_mean, .99)),
        oob = squish
      ) +
      theme(legend.title = element_markdown()) +
      coord_cartesian(expand = 0)+
      labs(title = "Monthly offset from ensemble mean anomalies",
           y = "Latitude") +
      theme(axis.title.x = element_blank()) +
      facet_wrap( ~ product, ncol = 1)
  )
[[1]]

Version Author Date
a29d870 jens-daniel-mueller 2024-05-16
960912c jens-daniel-mueller 2024-05-16
589243f jens-daniel-mueller 2024-05-15
009791f jens-daniel-mueller 2024-05-14
8c96de4 jens-daniel-mueller 2024-05-08
4b81eaf jens-daniel-mueller 2024-05-07
60abdac jens-daniel-mueller 2024-04-23
1ff6eb0 jens-daniel-mueller 2024-04-22
9ecd92e jens-daniel-mueller 2024-04-22
231f7cd jens-daniel-mueller 2024-04-17
a5911f0 jens-daniel-mueller 2024-04-17
dfcf790 jens-daniel-mueller 2024-04-11
d5075c5 jens-daniel-mueller 2024-04-11
37ccea4 jens-daniel-mueller 2024-04-08
19f40c9 jens-daniel-mueller 2024-04-05

[[2]]

Version Author Date
a29d870 jens-daniel-mueller 2024-05-16
960912c jens-daniel-mueller 2024-05-16
589243f jens-daniel-mueller 2024-05-15
009791f jens-daniel-mueller 2024-05-14
8c96de4 jens-daniel-mueller 2024-05-08
4b81eaf jens-daniel-mueller 2024-05-07
60abdac jens-daniel-mueller 2024-04-23
dfcf790 jens-daniel-mueller 2024-04-11
d5075c5 jens-daniel-mueller 2024-04-11
37ccea4 jens-daniel-mueller 2024-04-08
19f40c9 jens-daniel-mueller 2024-04-05

[[3]]

Version Author Date
5af03d1 jens-daniel-mueller 2024-05-17
a29d870 jens-daniel-mueller 2024-05-16
960912c jens-daniel-mueller 2024-05-16
589243f jens-daniel-mueller 2024-05-15
009791f jens-daniel-mueller 2024-05-14
8c96de4 jens-daniel-mueller 2024-05-08
3fea035 jens-daniel-mueller 2024-05-08
4b81eaf jens-daniel-mueller 2024-05-07
1ff6eb0 jens-daniel-mueller 2024-04-22
9ecd92e jens-daniel-mueller 2024-04-22
a5911f0 jens-daniel-mueller 2024-04-17
dfcf790 jens-daniel-mueller 2024-04-11
d5075c5 jens-daniel-mueller 2024-04-11
37ccea4 jens-daniel-mueller 2024-04-08
19f40c9 jens-daniel-mueller 2024-04-05

[[4]]

Version Author Date
a29d870 jens-daniel-mueller 2024-05-16
960912c jens-daniel-mueller 2024-05-16
589243f jens-daniel-mueller 2024-05-15
009791f jens-daniel-mueller 2024-05-14
8c96de4 jens-daniel-mueller 2024-05-08
4b81eaf jens-daniel-mueller 2024-05-07
a5911f0 jens-daniel-mueller 2024-04-17
dfcf790 jens-daniel-mueller 2024-04-11
d5075c5 jens-daniel-mueller 2024-04-11
37ccea4 jens-daniel-mueller 2024-04-08
19f40c9 jens-daniel-mueller 2024-04-05

[[5]]

Version Author Date
5af03d1 jens-daniel-mueller 2024-05-17
a29d870 jens-daniel-mueller 2024-05-16
960912c jens-daniel-mueller 2024-05-16
589243f jens-daniel-mueller 2024-05-15
009791f jens-daniel-mueller 2024-05-14
3fea035 jens-daniel-mueller 2024-05-08
4b81eaf jens-daniel-mueller 2024-05-07
231f7cd jens-daniel-mueller 2024-04-17
a5911f0 jens-daniel-mueller 2024-04-17
dfcf790 jens-daniel-mueller 2024-04-11
d5075c5 jens-daniel-mueller 2024-04-11
37ccea4 jens-daniel-mueller 2024-04-08
19f40c9 jens-daniel-mueller 2024-04-05

[[6]]

Version Author Date
a29d870 jens-daniel-mueller 2024-05-16
dbc1fc6 jens-daniel-mueller 2024-05-16
960912c jens-daniel-mueller 2024-05-16
589243f jens-daniel-mueller 2024-05-15
009791f jens-daniel-mueller 2024-05-14
8c96de4 jens-daniel-mueller 2024-05-08
3fea035 jens-daniel-mueller 2024-05-08
4b81eaf jens-daniel-mueller 2024-05-07
7f9c687 jens-daniel-mueller 2024-04-23
1ff6eb0 jens-daniel-mueller 2024-04-22
9ecd92e jens-daniel-mueller 2024-04-22
231f7cd jens-daniel-mueller 2024-04-17
a5911f0 jens-daniel-mueller 2024-04-17
dfcf790 jens-daniel-mueller 2024-04-11
d5075c5 jens-daniel-mueller 2024-04-11
37ccea4 jens-daniel-mueller 2024-04-08
19f40c9 jens-daniel-mueller 2024-04-05

[[7]]

Version Author Date
a29d870 jens-daniel-mueller 2024-05-16
dbc1fc6 jens-daniel-mueller 2024-05-16
960912c jens-daniel-mueller 2024-05-16
589243f jens-daniel-mueller 2024-05-15
009791f jens-daniel-mueller 2024-05-14
8c96de4 jens-daniel-mueller 2024-05-08
3fea035 jens-daniel-mueller 2024-05-08
4b81eaf jens-daniel-mueller 2024-05-07
7f9c687 jens-daniel-mueller 2024-04-23
1ff6eb0 jens-daniel-mueller 2024-04-22
9ecd92e jens-daniel-mueller 2024-04-22
231f7cd jens-daniel-mueller 2024-04-17
a5911f0 jens-daniel-mueller 2024-04-17
37ccea4 jens-daniel-mueller 2024-04-08
19f40c9 jens-daniel-mueller 2024-04-05

Regional means and integrals

The following plots show biome-, super biome- or global- averaged/integrated values of each variable as provided through the pCO2 product, represented here as the anomalies from the prediction of a linear/quadratic fit to the data from 1990 to 2022.

Anomalies are presented relative to the predicted annual mean of each year, hence preserving the seasonality.

Annual anomalies

pco2_product_annual_regression %>%
  filter(name %in% c("fgco2", "temperature"),
         biome == "Global",
         product %in% pco2_product_list) %>%
  ggplot(aes(year, value, col = product)) +
  geom_smooth(data = . %>% filter(year != 2023),
              method = "lm",
              se = FALSE,
              fullrange = TRUE, linewidth = 0.3) +
  geom_smooth(data = . %>% filter(year != 2023),
              method = "lm",
              se = FALSE) +
  geom_path() +
  geom_point() +
  scale_color_okabeito() +
  facet_grid(name ~ .,
             scales = "free_y",
             labeller = labeller(name = x_axis_labels),
             switch = "y") +
  theme(
    legend.title = element_blank(),
    axis.title = element_blank(),
    strip.text.y.left = element_markdown(),
    strip.placement = "outside",
    strip.background.y = element_blank(),
    legend.position = "top"
  )

pco2_product_annual_regression %>%
  filter(year == 2023,
         name %in% name_core) %>%
  mutate(region = case_when(biome == "Global" ~ "Global",
                            biome %in% super_biomes ~ "Super biomes",
                            TRUE ~ "Biomes"),
         region = factor(region, levels = c("Global", "Super biomes", "Biomes"))) %>% 
  group_split(name) %>%
  # head(1) %>%
  map(
    ~ ggplot(data = .x) +
      geom_col(aes(biome, value, fill = product),
                 position = "dodge2") +
      scale_fill_light() +
      geom_col(aes(biome, fit, group = product, col = paste0(2023,"\nlinear\nprediction")),
               position = "dodge2",
               fill = "transparent") +
      labs(y = labels_breaks(unique(.x$name))$i_legend_title,
           title = "Absolute") +
      scale_color_grey() +
      facet_grid(.~region, scales = "free_x", space = "free_x") +
      theme(legend.title = element_blank(),
            axis.text.x = element_text(angle = 90, vjust = 0.5, hjust=1),
            axis.title.x = element_blank(),
            axis.title.y = element_markdown(),
            strip.background = element_blank(),
            legend.position = "top")
  )
[[1]]

Version Author Date
589243f jens-daniel-mueller 2024-05-15
009791f jens-daniel-mueller 2024-05-14
8c96de4 jens-daniel-mueller 2024-05-08
4b81eaf jens-daniel-mueller 2024-05-07
60abdac jens-daniel-mueller 2024-04-23
1ff6eb0 jens-daniel-mueller 2024-04-22
9ecd92e jens-daniel-mueller 2024-04-22
231f7cd jens-daniel-mueller 2024-04-17
a5911f0 jens-daniel-mueller 2024-04-17
dfcf790 jens-daniel-mueller 2024-04-11
d5075c5 jens-daniel-mueller 2024-04-11
19f40c9 jens-daniel-mueller 2024-04-05

[[2]]

Version Author Date
589243f jens-daniel-mueller 2024-05-15
009791f jens-daniel-mueller 2024-05-14
8c96de4 jens-daniel-mueller 2024-05-08
4b81eaf jens-daniel-mueller 2024-05-07
60abdac jens-daniel-mueller 2024-04-23
dfcf790 jens-daniel-mueller 2024-04-11
d5075c5 jens-daniel-mueller 2024-04-11
19f40c9 jens-daniel-mueller 2024-04-05

[[3]]

Version Author Date
5af03d1 jens-daniel-mueller 2024-05-17
589243f jens-daniel-mueller 2024-05-15
009791f jens-daniel-mueller 2024-05-14
8c96de4 jens-daniel-mueller 2024-05-08
3fea035 jens-daniel-mueller 2024-05-08
4b81eaf jens-daniel-mueller 2024-05-07
1ff6eb0 jens-daniel-mueller 2024-04-22
9ecd92e jens-daniel-mueller 2024-04-22
a5911f0 jens-daniel-mueller 2024-04-17
dfcf790 jens-daniel-mueller 2024-04-11
d5075c5 jens-daniel-mueller 2024-04-11
19f40c9 jens-daniel-mueller 2024-04-05

[[4]]

Version Author Date
589243f jens-daniel-mueller 2024-05-15
009791f jens-daniel-mueller 2024-05-14
8c96de4 jens-daniel-mueller 2024-05-08
4b81eaf jens-daniel-mueller 2024-05-07
dfcf790 jens-daniel-mueller 2024-04-11
d5075c5 jens-daniel-mueller 2024-04-11
19f40c9 jens-daniel-mueller 2024-04-05

[[5]]

Version Author Date
5af03d1 jens-daniel-mueller 2024-05-17
589243f jens-daniel-mueller 2024-05-15
009791f jens-daniel-mueller 2024-05-14
3fea035 jens-daniel-mueller 2024-05-08
4b81eaf jens-daniel-mueller 2024-05-07
a5911f0 jens-daniel-mueller 2024-04-17
dfcf790 jens-daniel-mueller 2024-04-11
d5075c5 jens-daniel-mueller 2024-04-11
19f40c9 jens-daniel-mueller 2024-04-05

[[6]]

Version Author Date
dbc1fc6 jens-daniel-mueller 2024-05-16
589243f jens-daniel-mueller 2024-05-15
009791f jens-daniel-mueller 2024-05-14
8c96de4 jens-daniel-mueller 2024-05-08
60abdac jens-daniel-mueller 2024-04-23
dfcf790 jens-daniel-mueller 2024-04-11
d5075c5 jens-daniel-mueller 2024-04-11
19f40c9 jens-daniel-mueller 2024-04-05

[[7]]

Version Author Date
dbc1fc6 jens-daniel-mueller 2024-05-16
589243f jens-daniel-mueller 2024-05-15
009791f jens-daniel-mueller 2024-05-14
3fea035 jens-daniel-mueller 2024-05-08
4b81eaf jens-daniel-mueller 2024-05-07
231f7cd jens-daniel-mueller 2024-04-17
dfcf790 jens-daniel-mueller 2024-04-11
d5075c5 jens-daniel-mueller 2024-04-11
19f40c9 jens-daniel-mueller 2024-04-05
full_join(
  pco2_product_annual_regression %>%
    filter(year != 2023,
           name %in% name_core) %>%
    group_by(product, name, biome) %>% 
    summarise(resid_sd = sd(resid)) %>% 
    ungroup(),
  pco2_product_annual_regression %>%
    filter(year == 2023,
           name %in% name_core)) %>%
  mutate(
    region = case_when(
      biome == "Global" ~ "Global",
      biome %in% super_biomes ~ "Super biomes",
      TRUE ~ "Biomes"
    ),
    region = factor(region, levels = c("Global", "Super biomes", "Biomes"))
  ) %>%
  group_split(name) %>%
  # head(1) %>%
  map(
    ~ ggplot(data = .x) +
      geom_col(aes(biome, value - fit, fill = product),
                 position = "dodge2") +
      scale_fill_light() +
      geom_col(aes(biome, resid_sd * sign(value - fit), 
                   group = product, col = paste0("Anomaly SD\nexcl.",2023)),
               position = "dodge2",
               fill = "transparent") +
      labs(y = labels_breaks(unique(.x$name))$i_legend_title,
           title = "Anomalies") +
      scale_color_grey() +
      facet_grid(.~region, scales = "free_x", space = "free_x") +
      theme(legend.title = element_blank(),
            axis.text.x = element_text(angle = 90, vjust = 0.5, hjust=1),
            axis.title.x = element_blank(),
            axis.title.y = element_markdown(),
            strip.background = element_blank(),
            legend.position = "top")
  )
[[1]]

Version Author Date
589243f jens-daniel-mueller 2024-05-15
1e4c153 jens-daniel-mueller 2024-05-14
009791f jens-daniel-mueller 2024-05-14
8c96de4 jens-daniel-mueller 2024-05-08
4b81eaf jens-daniel-mueller 2024-05-07
60abdac jens-daniel-mueller 2024-04-23
1ff6eb0 jens-daniel-mueller 2024-04-22
9ecd92e jens-daniel-mueller 2024-04-22
231f7cd jens-daniel-mueller 2024-04-17
a5911f0 jens-daniel-mueller 2024-04-17
dfcf790 jens-daniel-mueller 2024-04-11
d5075c5 jens-daniel-mueller 2024-04-11
19f40c9 jens-daniel-mueller 2024-04-05

[[2]]

Version Author Date
589243f jens-daniel-mueller 2024-05-15
1e4c153 jens-daniel-mueller 2024-05-14
009791f jens-daniel-mueller 2024-05-14
8c96de4 jens-daniel-mueller 2024-05-08
4b81eaf jens-daniel-mueller 2024-05-07
60abdac jens-daniel-mueller 2024-04-23
dfcf790 jens-daniel-mueller 2024-04-11
d5075c5 jens-daniel-mueller 2024-04-11
19f40c9 jens-daniel-mueller 2024-04-05

[[3]]

Version Author Date
5af03d1 jens-daniel-mueller 2024-05-17
589243f jens-daniel-mueller 2024-05-15
1e4c153 jens-daniel-mueller 2024-05-14
009791f jens-daniel-mueller 2024-05-14
8c96de4 jens-daniel-mueller 2024-05-08
3fea035 jens-daniel-mueller 2024-05-08
4b81eaf jens-daniel-mueller 2024-05-07
1ff6eb0 jens-daniel-mueller 2024-04-22
9ecd92e jens-daniel-mueller 2024-04-22
a5911f0 jens-daniel-mueller 2024-04-17
dfcf790 jens-daniel-mueller 2024-04-11
d5075c5 jens-daniel-mueller 2024-04-11
19f40c9 jens-daniel-mueller 2024-04-05

[[4]]

Version Author Date
589243f jens-daniel-mueller 2024-05-15
1e4c153 jens-daniel-mueller 2024-05-14
009791f jens-daniel-mueller 2024-05-14
8c96de4 jens-daniel-mueller 2024-05-08
4b81eaf jens-daniel-mueller 2024-05-07
dfcf790 jens-daniel-mueller 2024-04-11
d5075c5 jens-daniel-mueller 2024-04-11
19f40c9 jens-daniel-mueller 2024-04-05

[[5]]

Version Author Date
5af03d1 jens-daniel-mueller 2024-05-17
589243f jens-daniel-mueller 2024-05-15
1e4c153 jens-daniel-mueller 2024-05-14
009791f jens-daniel-mueller 2024-05-14
3fea035 jens-daniel-mueller 2024-05-08
4b81eaf jens-daniel-mueller 2024-05-07
a5911f0 jens-daniel-mueller 2024-04-17
dfcf790 jens-daniel-mueller 2024-04-11
d5075c5 jens-daniel-mueller 2024-04-11
19f40c9 jens-daniel-mueller 2024-04-05

[[6]]

Version Author Date
dbc1fc6 jens-daniel-mueller 2024-05-16
589243f jens-daniel-mueller 2024-05-15
1e4c153 jens-daniel-mueller 2024-05-14
009791f jens-daniel-mueller 2024-05-14
8c96de4 jens-daniel-mueller 2024-05-08
60abdac jens-daniel-mueller 2024-04-23
dfcf790 jens-daniel-mueller 2024-04-11
d5075c5 jens-daniel-mueller 2024-04-11
19f40c9 jens-daniel-mueller 2024-04-05

[[7]]

Version Author Date
dbc1fc6 jens-daniel-mueller 2024-05-16
589243f jens-daniel-mueller 2024-05-15
009791f jens-daniel-mueller 2024-05-14
3fea035 jens-daniel-mueller 2024-05-08
4b81eaf jens-daniel-mueller 2024-05-07
231f7cd jens-daniel-mueller 2024-04-17
dfcf790 jens-daniel-mueller 2024-04-11
d5075c5 jens-daniel-mueller 2024-04-11
19f40c9 jens-daniel-mueller 2024-04-05

Seasonal anomalies

Flux anomaly correlation

The following plots aim to unravel the correlation between biome-, super-biome- or globally- integrated monthly flux anomalies and the corresponding anomalies of the means/integrals of each other variable.

Anomalies are first presented are first presented in absolute units. Due to the different flux magnitudes, we need to plot the globally and biome-integrated fluxes separately. Secondly, we normalize the anomalies to the monthly spread (expressed as standard deviation) of the anomalies from 1990 to 2021.

Annual anomalies

Absolute

pco2_product_annual_regression %>%
  filter(biome %in% "Global",
         name %in% name_core) %>%
  select(-c(value, fit)) %>%
  pivot_wider(values_from = resid) %>%
  pivot_longer(-c(product, year, biome, fgco2_int))  %>%
  group_split(name) %>%
  # head(1) %>%
  map(
    ~ ggplot(data = .x,
             aes(value, fgco2_int)) +
      geom_hline(yintercept = 0) +
      geom_point(
        data = . %>% filter(year != 2023),
        aes(fill = year),
        shape = 21
      ) +
      geom_smooth(
        data = . %>% filter(year != 2023),
        method = "lm",
        se = FALSE,
        fullrange = TRUE,
        aes(col = paste("Regression fit\nexcl.", 2023))
      ) +
      scale_color_grey() +
      scale_fill_grayC() +
      new_scale_fill() +
      geom_point(
        data = . %>% filter(between(year, 2023-1, 2023)),
        aes(fill = as.factor(year)),
        shape = 21,
        size = 2
      )  +
      scale_fill_manual(
        values = c("orange", "red"),
        guide = guide_legend(reverse = TRUE,
                             order = 1)
      ) +
      labs(y = labels_breaks("fgco2_int")$i_legend_title,
           x = labels_breaks(unique(.x$name))$i_legend_title) +
      facet_grid(
        biome ~ product,
        scales = "free_y"
      ) +
      theme(
        axis.title.x = element_markdown(),
        axis.title.y = element_markdown(),
        legend.title = element_blank()
      )
  )
[[1]]

Version Author Date
009791f jens-daniel-mueller 2024-05-14
8c96de4 jens-daniel-mueller 2024-05-08
4b81eaf jens-daniel-mueller 2024-05-07
60abdac jens-daniel-mueller 2024-04-23
1ff6eb0 jens-daniel-mueller 2024-04-22
9ecd92e jens-daniel-mueller 2024-04-22
231f7cd jens-daniel-mueller 2024-04-17
a5911f0 jens-daniel-mueller 2024-04-17
dfcf790 jens-daniel-mueller 2024-04-11
d5075c5 jens-daniel-mueller 2024-04-11
19f40c9 jens-daniel-mueller 2024-04-05
a83c8fc jens-daniel-mueller 2024-04-03

[[2]]

Version Author Date
5af03d1 jens-daniel-mueller 2024-05-17
009791f jens-daniel-mueller 2024-05-14
8c96de4 jens-daniel-mueller 2024-05-08
3fea035 jens-daniel-mueller 2024-05-08
4b81eaf jens-daniel-mueller 2024-05-07
1ff6eb0 jens-daniel-mueller 2024-04-22
9ecd92e jens-daniel-mueller 2024-04-22
231f7cd jens-daniel-mueller 2024-04-17
a5911f0 jens-daniel-mueller 2024-04-17
dfcf790 jens-daniel-mueller 2024-04-11
d5075c5 jens-daniel-mueller 2024-04-11
19f40c9 jens-daniel-mueller 2024-04-05
a83c8fc jens-daniel-mueller 2024-04-03

[[3]]

Version Author Date
589243f jens-daniel-mueller 2024-05-15
009791f jens-daniel-mueller 2024-05-14
8c96de4 jens-daniel-mueller 2024-05-08
4b81eaf jens-daniel-mueller 2024-05-07
60abdac jens-daniel-mueller 2024-04-23
1ff6eb0 jens-daniel-mueller 2024-04-22
9ecd92e jens-daniel-mueller 2024-04-22
231f7cd jens-daniel-mueller 2024-04-17
a5911f0 jens-daniel-mueller 2024-04-17
dfcf790 jens-daniel-mueller 2024-04-11
d5075c5 jens-daniel-mueller 2024-04-11
19f40c9 jens-daniel-mueller 2024-04-05
a83c8fc jens-daniel-mueller 2024-04-03

[[4]]

Version Author Date
dbc1fc6 jens-daniel-mueller 2024-05-16
589243f jens-daniel-mueller 2024-05-15
009791f jens-daniel-mueller 2024-05-14
8c96de4 jens-daniel-mueller 2024-05-08
3fea035 jens-daniel-mueller 2024-05-08
4b81eaf jens-daniel-mueller 2024-05-07
1ff6eb0 jens-daniel-mueller 2024-04-22
9ecd92e jens-daniel-mueller 2024-04-22
231f7cd jens-daniel-mueller 2024-04-17
a5911f0 jens-daniel-mueller 2024-04-17
dfcf790 jens-daniel-mueller 2024-04-11
d5075c5 jens-daniel-mueller 2024-04-11
19f40c9 jens-daniel-mueller 2024-04-05
a83c8fc jens-daniel-mueller 2024-04-03

[[5]]

Version Author Date
5af03d1 jens-daniel-mueller 2024-05-17
dbc1fc6 jens-daniel-mueller 2024-05-16
589243f jens-daniel-mueller 2024-05-15
009791f jens-daniel-mueller 2024-05-14
8c96de4 jens-daniel-mueller 2024-05-08
4b81eaf jens-daniel-mueller 2024-05-07
60abdac jens-daniel-mueller 2024-04-23
1ff6eb0 jens-daniel-mueller 2024-04-22
9ecd92e jens-daniel-mueller 2024-04-22
231f7cd jens-daniel-mueller 2024-04-17
a5911f0 jens-daniel-mueller 2024-04-17
dfcf790 jens-daniel-mueller 2024-04-11
d5075c5 jens-daniel-mueller 2024-04-11
19f40c9 jens-daniel-mueller 2024-04-05
a83c8fc jens-daniel-mueller 2024-04-03

[[6]]

Version Author Date
dbc1fc6 jens-daniel-mueller 2024-05-16
589243f jens-daniel-mueller 2024-05-15
009791f jens-daniel-mueller 2024-05-14
8c96de4 jens-daniel-mueller 2024-05-08
3fea035 jens-daniel-mueller 2024-05-08
4b81eaf jens-daniel-mueller 2024-05-07
1ff6eb0 jens-daniel-mueller 2024-04-22
9ecd92e jens-daniel-mueller 2024-04-22
231f7cd jens-daniel-mueller 2024-04-17
a5911f0 jens-daniel-mueller 2024-04-17
dfcf790 jens-daniel-mueller 2024-04-11
d5075c5 jens-daniel-mueller 2024-04-11
19f40c9 jens-daniel-mueller 2024-04-05
a83c8fc jens-daniel-mueller 2024-04-03
pco2_product_annual_regression %>%
  filter(biome %in% super_biomes,
         name %in% name_core) %>%
  select(-c(value, fit)) %>%
  pivot_wider(values_from = resid) %>%
  pivot_longer(-c(product, year, biome, fgco2_int))  %>%
  group_split(name) %>%
  # head(1) %>%
  map(
    ~ ggplot(data = .x,
             aes(value, fgco2_int)) +
      geom_hline(yintercept = 0) +
      geom_point(
        data = . %>% filter(year != 2023),
        aes(fill = year),
        shape = 21
      ) +
      geom_smooth(
        data = . %>% filter(year != 2023),
        method = "lm",
        se = FALSE,
        fullrange = TRUE,
        aes(col = paste("Regression fit\nexcl.", 2023))
      ) +
      scale_color_grey() +
      scale_fill_grayC() +
      new_scale_fill() +
      geom_point(
        data = . %>% filter(between(year, 2023-1, 2023)),
        aes(fill = as.factor(year)),
        shape = 21,
        size = 2
      )  +
      scale_fill_manual(
        values = c("orange", "red"),
        guide = guide_legend(reverse = TRUE,
                             order = 1)
      ) +
      labs(y = labels_breaks("fgco2_int")$i_legend_title,
           x = labels_breaks(unique(.x$name))$i_legend_title) +
      facet_grid(
        biome ~ product,
        scales = "free_y"
      ) +
      theme(
        axis.title.x = element_markdown(),
        axis.title.y = element_markdown(),
        legend.title = element_blank()
      )
  )
[[1]]

Version Author Date
009791f jens-daniel-mueller 2024-05-14
8c96de4 jens-daniel-mueller 2024-05-08
4b81eaf jens-daniel-mueller 2024-05-07
60abdac jens-daniel-mueller 2024-04-23
1ff6eb0 jens-daniel-mueller 2024-04-22
9ecd92e jens-daniel-mueller 2024-04-22
231f7cd jens-daniel-mueller 2024-04-17
a5911f0 jens-daniel-mueller 2024-04-17
dfcf790 jens-daniel-mueller 2024-04-11
d5075c5 jens-daniel-mueller 2024-04-11
19f40c9 jens-daniel-mueller 2024-04-05
a83c8fc jens-daniel-mueller 2024-04-03

[[2]]

Version Author Date
5af03d1 jens-daniel-mueller 2024-05-17
009791f jens-daniel-mueller 2024-05-14
8c96de4 jens-daniel-mueller 2024-05-08
3fea035 jens-daniel-mueller 2024-05-08
4b81eaf jens-daniel-mueller 2024-05-07
1ff6eb0 jens-daniel-mueller 2024-04-22
9ecd92e jens-daniel-mueller 2024-04-22
231f7cd jens-daniel-mueller 2024-04-17
a5911f0 jens-daniel-mueller 2024-04-17
dfcf790 jens-daniel-mueller 2024-04-11
d5075c5 jens-daniel-mueller 2024-04-11
19f40c9 jens-daniel-mueller 2024-04-05
a83c8fc jens-daniel-mueller 2024-04-03

[[3]]

Version Author Date
589243f jens-daniel-mueller 2024-05-15
009791f jens-daniel-mueller 2024-05-14
8c96de4 jens-daniel-mueller 2024-05-08
4b81eaf jens-daniel-mueller 2024-05-07
60abdac jens-daniel-mueller 2024-04-23
1ff6eb0 jens-daniel-mueller 2024-04-22
9ecd92e jens-daniel-mueller 2024-04-22
231f7cd jens-daniel-mueller 2024-04-17
a5911f0 jens-daniel-mueller 2024-04-17
dfcf790 jens-daniel-mueller 2024-04-11
d5075c5 jens-daniel-mueller 2024-04-11
19f40c9 jens-daniel-mueller 2024-04-05
a83c8fc jens-daniel-mueller 2024-04-03

[[4]]

Version Author Date
dbc1fc6 jens-daniel-mueller 2024-05-16
589243f jens-daniel-mueller 2024-05-15
009791f jens-daniel-mueller 2024-05-14
8c96de4 jens-daniel-mueller 2024-05-08
3fea035 jens-daniel-mueller 2024-05-08
4b81eaf jens-daniel-mueller 2024-05-07
1ff6eb0 jens-daniel-mueller 2024-04-22
9ecd92e jens-daniel-mueller 2024-04-22
231f7cd jens-daniel-mueller 2024-04-17
a5911f0 jens-daniel-mueller 2024-04-17
dfcf790 jens-daniel-mueller 2024-04-11
d5075c5 jens-daniel-mueller 2024-04-11
19f40c9 jens-daniel-mueller 2024-04-05
a83c8fc jens-daniel-mueller 2024-04-03

[[5]]

Version Author Date
5af03d1 jens-daniel-mueller 2024-05-17
dbc1fc6 jens-daniel-mueller 2024-05-16
589243f jens-daniel-mueller 2024-05-15
009791f jens-daniel-mueller 2024-05-14
8c96de4 jens-daniel-mueller 2024-05-08
4b81eaf jens-daniel-mueller 2024-05-07
60abdac jens-daniel-mueller 2024-04-23
1ff6eb0 jens-daniel-mueller 2024-04-22
9ecd92e jens-daniel-mueller 2024-04-22
231f7cd jens-daniel-mueller 2024-04-17
a5911f0 jens-daniel-mueller 2024-04-17
dfcf790 jens-daniel-mueller 2024-04-11
d5075c5 jens-daniel-mueller 2024-04-11
19f40c9 jens-daniel-mueller 2024-04-05
a83c8fc jens-daniel-mueller 2024-04-03

[[6]]

Version Author Date
dbc1fc6 jens-daniel-mueller 2024-05-16
589243f jens-daniel-mueller 2024-05-15
009791f jens-daniel-mueller 2024-05-14
8c96de4 jens-daniel-mueller 2024-05-08
3fea035 jens-daniel-mueller 2024-05-08
4b81eaf jens-daniel-mueller 2024-05-07
1ff6eb0 jens-daniel-mueller 2024-04-22
9ecd92e jens-daniel-mueller 2024-04-22
231f7cd jens-daniel-mueller 2024-04-17
a5911f0 jens-daniel-mueller 2024-04-17
dfcf790 jens-daniel-mueller 2024-04-11
d5075c5 jens-daniel-mueller 2024-04-11
19f40c9 jens-daniel-mueller 2024-04-05
a83c8fc jens-daniel-mueller 2024-04-03
pco2_product_annual_regression %>%
  filter(biome %in% key_biomes,
         name %in% name_core) %>%
  select(-c(value, fit)) %>%
  pivot_wider(values_from = resid) %>%
  pivot_longer(-c(product, year, biome, fgco2_int))  %>%
  group_split(name) %>%
  # head(1) %>%
  map(
    ~ ggplot(data = .x,
             aes(value, fgco2_int)) +
      geom_hline(yintercept = 0) +
      geom_point(
        data = . %>% filter(year != 2023),
        aes(fill = year),
        shape = 21
      ) +
      geom_smooth(
        data = . %>% filter(year != 2023),
        method = "lm",
        se = FALSE,
        fullrange = TRUE,
        aes(col = paste("Regression fit\nexcl.", 2023))
      ) +
      scale_color_grey() +
      scale_fill_grayC() +
      new_scale_fill() +
      geom_point(
        data = . %>% filter(between(year, 2023-1, 2023)),
        aes(fill = as.factor(year)),
        shape = 21,
        size = 2
      )  +
      scale_fill_manual(
        values = c("orange", "red"),
        guide = guide_legend(reverse = TRUE,
                             order = 1)
      ) +
      labs(y = labels_breaks("fgco2_int")$i_legend_title,
           x = labels_breaks(unique(.x$name))$i_legend_title) +
      facet_grid(
        biome ~ product,
        scales = "free_y"
      ) +
      theme(
        axis.title.x = element_markdown(),
        axis.title.y = element_markdown(),
        legend.title = element_blank()
      )
  )
[[1]]

Version Author Date
009791f jens-daniel-mueller 2024-05-14
8c96de4 jens-daniel-mueller 2024-05-08
4b81eaf jens-daniel-mueller 2024-05-07
60abdac jens-daniel-mueller 2024-04-23
1ff6eb0 jens-daniel-mueller 2024-04-22
9ecd92e jens-daniel-mueller 2024-04-22
231f7cd jens-daniel-mueller 2024-04-17
a5911f0 jens-daniel-mueller 2024-04-17
dfcf790 jens-daniel-mueller 2024-04-11
d5075c5 jens-daniel-mueller 2024-04-11
19f40c9 jens-daniel-mueller 2024-04-05
a83c8fc jens-daniel-mueller 2024-04-03

[[2]]

Version Author Date
5af03d1 jens-daniel-mueller 2024-05-17
009791f jens-daniel-mueller 2024-05-14
8c96de4 jens-daniel-mueller 2024-05-08
3fea035 jens-daniel-mueller 2024-05-08
4b81eaf jens-daniel-mueller 2024-05-07
1ff6eb0 jens-daniel-mueller 2024-04-22
9ecd92e jens-daniel-mueller 2024-04-22
231f7cd jens-daniel-mueller 2024-04-17
a5911f0 jens-daniel-mueller 2024-04-17
dfcf790 jens-daniel-mueller 2024-04-11
d5075c5 jens-daniel-mueller 2024-04-11
19f40c9 jens-daniel-mueller 2024-04-05
a83c8fc jens-daniel-mueller 2024-04-03

[[3]]

Version Author Date
589243f jens-daniel-mueller 2024-05-15
009791f jens-daniel-mueller 2024-05-14
8c96de4 jens-daniel-mueller 2024-05-08
60abdac jens-daniel-mueller 2024-04-23
1ff6eb0 jens-daniel-mueller 2024-04-22
9ecd92e jens-daniel-mueller 2024-04-22
231f7cd jens-daniel-mueller 2024-04-17
a5911f0 jens-daniel-mueller 2024-04-17
dfcf790 jens-daniel-mueller 2024-04-11
d5075c5 jens-daniel-mueller 2024-04-11
19f40c9 jens-daniel-mueller 2024-04-05
a83c8fc jens-daniel-mueller 2024-04-03

[[4]]

Version Author Date
dbc1fc6 jens-daniel-mueller 2024-05-16
589243f jens-daniel-mueller 2024-05-15
009791f jens-daniel-mueller 2024-05-14
8c96de4 jens-daniel-mueller 2024-05-08
3fea035 jens-daniel-mueller 2024-05-08
4b81eaf jens-daniel-mueller 2024-05-07
1ff6eb0 jens-daniel-mueller 2024-04-22
9ecd92e jens-daniel-mueller 2024-04-22
231f7cd jens-daniel-mueller 2024-04-17
a5911f0 jens-daniel-mueller 2024-04-17
dfcf790 jens-daniel-mueller 2024-04-11
d5075c5 jens-daniel-mueller 2024-04-11
19f40c9 jens-daniel-mueller 2024-04-05
a83c8fc jens-daniel-mueller 2024-04-03

[[5]]

Version Author Date
5af03d1 jens-daniel-mueller 2024-05-17
dbc1fc6 jens-daniel-mueller 2024-05-16
589243f jens-daniel-mueller 2024-05-15
009791f jens-daniel-mueller 2024-05-14
8c96de4 jens-daniel-mueller 2024-05-08
4b81eaf jens-daniel-mueller 2024-05-07
60abdac jens-daniel-mueller 2024-04-23
1ff6eb0 jens-daniel-mueller 2024-04-22
9ecd92e jens-daniel-mueller 2024-04-22
231f7cd jens-daniel-mueller 2024-04-17
a5911f0 jens-daniel-mueller 2024-04-17
dfcf790 jens-daniel-mueller 2024-04-11
d5075c5 jens-daniel-mueller 2024-04-11
19f40c9 jens-daniel-mueller 2024-04-05
a83c8fc jens-daniel-mueller 2024-04-03

[[6]]

Version Author Date
dbc1fc6 jens-daniel-mueller 2024-05-16
589243f jens-daniel-mueller 2024-05-15
009791f jens-daniel-mueller 2024-05-14
8c96de4 jens-daniel-mueller 2024-05-08
3fea035 jens-daniel-mueller 2024-05-08
4b81eaf jens-daniel-mueller 2024-05-07
1ff6eb0 jens-daniel-mueller 2024-04-22
9ecd92e jens-daniel-mueller 2024-04-22
231f7cd jens-daniel-mueller 2024-04-17
a5911f0 jens-daniel-mueller 2024-04-17
dfcf790 jens-daniel-mueller 2024-04-11
d5075c5 jens-daniel-mueller 2024-04-11
19f40c9 jens-daniel-mueller 2024-04-05
a83c8fc jens-daniel-mueller 2024-04-03

Monthly anomalies

Absolute

pco2_product_monthly_detrended %>%
  filter(biome == "Global") %>%
  select(-c(time, fit, value)) %>% 
  pivot_wider(values_from = resid) %>%
  pivot_longer(-c(product, year, month, biome, fgco2_int))  %>%
  group_split(name) %>%
  # head(1) %>%
  map(
    ~ ggplot(data = .x,
             aes(value, fgco2_int)) +
      geom_hline(yintercept = 0) +
      geom_point(
        data = . %>% filter(year != 2023),
        aes(col = paste(min(year), max(year), sep = "-")),
        alpha = 0.2
      ) +
      geom_smooth(
        data = . %>% filter(year != 2023),
        aes(col = paste(min(year), max(year), sep = "-")),
        method = "lm",
        se = FALSE,
        fullrange = TRUE
      )  +
      scale_color_grey(name = "") +
      new_scale_color() +
      geom_path(data = . %>% filter(year == 2023),
      aes(col = as.factor(month), group = 1))  +
      geom_point(
        data = . %>% filter(year == 2023),
        aes(fill =  as.factor(month)),
        shape = 21,
        size = 3
      )  +
      scale_color_scico_d(
        palette = "buda",
        guide = guide_legend(reverse = TRUE,
                             order = 1),
        name = paste("Month\nof", 2023)
      ) +
      scale_fill_scico_d(
        palette = "buda",
        guide = guide_legend(reverse = TRUE,
                             order = 1),
        name = paste("Month\nof", 2023)
      ) +
      labs(
        y = labels_breaks("fgco2_int")$i_legend_title,
        x = labels_breaks(unique(.x$name))$i_legend_title
      ) +
      facet_grid(biome ~ product,
                 scales = "free_y") +
      theme(
        axis.title.x = element_markdown(),
        axis.title.y = element_markdown()
      )
  )
[[1]]

Version Author Date
009791f jens-daniel-mueller 2024-05-14
8c96de4 jens-daniel-mueller 2024-05-08
4b81eaf jens-daniel-mueller 2024-05-07
60abdac jens-daniel-mueller 2024-04-23
1ff6eb0 jens-daniel-mueller 2024-04-22
9ecd92e jens-daniel-mueller 2024-04-22
231f7cd jens-daniel-mueller 2024-04-17
a5911f0 jens-daniel-mueller 2024-04-17
6709afa jens-daniel-mueller 2024-04-12
58e3680 jens-daniel-mueller 2024-04-11

[[2]]

Version Author Date
5af03d1 jens-daniel-mueller 2024-05-17
009791f jens-daniel-mueller 2024-05-14
8c96de4 jens-daniel-mueller 2024-05-08
3fea035 jens-daniel-mueller 2024-05-08
4b81eaf jens-daniel-mueller 2024-05-07
1ff6eb0 jens-daniel-mueller 2024-04-22
9ecd92e jens-daniel-mueller 2024-04-22
231f7cd jens-daniel-mueller 2024-04-17
a5911f0 jens-daniel-mueller 2024-04-17
6709afa jens-daniel-mueller 2024-04-12

[[3]]

Version Author Date
589243f jens-daniel-mueller 2024-05-15
009791f jens-daniel-mueller 2024-05-14
8c96de4 jens-daniel-mueller 2024-05-08
4b81eaf jens-daniel-mueller 2024-05-07
60abdac jens-daniel-mueller 2024-04-23
1ff6eb0 jens-daniel-mueller 2024-04-22
9ecd92e jens-daniel-mueller 2024-04-22
231f7cd jens-daniel-mueller 2024-04-17
a5911f0 jens-daniel-mueller 2024-04-17
6709afa jens-daniel-mueller 2024-04-12

[[4]]

Version Author Date
dbc1fc6 jens-daniel-mueller 2024-05-16
589243f jens-daniel-mueller 2024-05-15
009791f jens-daniel-mueller 2024-05-14
8c96de4 jens-daniel-mueller 2024-05-08
3fea035 jens-daniel-mueller 2024-05-08
4b81eaf jens-daniel-mueller 2024-05-07
1ff6eb0 jens-daniel-mueller 2024-04-22
9ecd92e jens-daniel-mueller 2024-04-22
231f7cd jens-daniel-mueller 2024-04-17
a5911f0 jens-daniel-mueller 2024-04-17
6709afa jens-daniel-mueller 2024-04-12

[[5]]

Version Author Date
5af03d1 jens-daniel-mueller 2024-05-17
dbc1fc6 jens-daniel-mueller 2024-05-16
589243f jens-daniel-mueller 2024-05-15
009791f jens-daniel-mueller 2024-05-14
8c96de4 jens-daniel-mueller 2024-05-08
4b81eaf jens-daniel-mueller 2024-05-07
60abdac jens-daniel-mueller 2024-04-23
1ff6eb0 jens-daniel-mueller 2024-04-22
9ecd92e jens-daniel-mueller 2024-04-22
231f7cd jens-daniel-mueller 2024-04-17
a5911f0 jens-daniel-mueller 2024-04-17
6709afa jens-daniel-mueller 2024-04-12

[[6]]

Version Author Date
dbc1fc6 jens-daniel-mueller 2024-05-16
589243f jens-daniel-mueller 2024-05-15
009791f jens-daniel-mueller 2024-05-14
8c96de4 jens-daniel-mueller 2024-05-08
3fea035 jens-daniel-mueller 2024-05-08
4b81eaf jens-daniel-mueller 2024-05-07
1ff6eb0 jens-daniel-mueller 2024-04-22
9ecd92e jens-daniel-mueller 2024-04-22
231f7cd jens-daniel-mueller 2024-04-17
a5911f0 jens-daniel-mueller 2024-04-17
6709afa jens-daniel-mueller 2024-04-12
pco2_product_monthly_detrended %>%
  filter(biome %in% super_biomes) %>%
  select(-c(time, fit, value)) %>% 
  pivot_wider(values_from = resid) %>%
  pivot_longer(-c(product, year, month, biome, fgco2_int))  %>%
  group_split(name) %>%
  # head(1) %>%
  map(
    ~ ggplot(data = .x,
             aes(value, fgco2_int)) +
      geom_hline(yintercept = 0) +
      geom_point(
        data = . %>% filter(year != 2023),
        aes(col = paste(min(year), max(year), sep = "-")),
        alpha = 0.2
      ) +
      geom_smooth(
        data = . %>% filter(year != 2023),
        aes(col = paste(min(year), max(year), sep = "-")),
        method = "lm",
        se = FALSE,
        fullrange = TRUE
      )  +
      scale_color_grey(name = "") +
      new_scale_color() +
      geom_path(data = . %>% filter(year == 2023),
      aes(col = as.factor(month), group = 1))  +
      geom_point(
        data = . %>% filter(year == 2023),
        aes(fill =  as.factor(month)),
        shape = 21,
        size = 3
      )  +
      scale_color_scico_d(
        palette = "buda",
        guide = guide_legend(reverse = TRUE,
                             order = 1),
        name = paste("Month\nof", 2023)
      ) +
      scale_fill_scico_d(
        palette = "buda",
        guide = guide_legend(reverse = TRUE,
                             order = 1),
        name = paste("Month\nof", 2023)
      ) +
      labs(
        y = labels_breaks("fgco2_int")$i_legend_title,
        x = labels_breaks(unique(.x$name))$i_legend_title
      ) +
      facet_grid(biome ~ product,
                 scales = "free_y") +
      theme(
        axis.title.x = element_markdown(),
        axis.title.y = element_markdown()
      )
  )
[[1]]

Version Author Date
009791f jens-daniel-mueller 2024-05-14
8c96de4 jens-daniel-mueller 2024-05-08
4b81eaf jens-daniel-mueller 2024-05-07
60abdac jens-daniel-mueller 2024-04-23
1ff6eb0 jens-daniel-mueller 2024-04-22
9ecd92e jens-daniel-mueller 2024-04-22
231f7cd jens-daniel-mueller 2024-04-17
a5911f0 jens-daniel-mueller 2024-04-17
6709afa jens-daniel-mueller 2024-04-12

[[2]]

Version Author Date
5af03d1 jens-daniel-mueller 2024-05-17
009791f jens-daniel-mueller 2024-05-14
8c96de4 jens-daniel-mueller 2024-05-08
3fea035 jens-daniel-mueller 2024-05-08
4b81eaf jens-daniel-mueller 2024-05-07
1ff6eb0 jens-daniel-mueller 2024-04-22
9ecd92e jens-daniel-mueller 2024-04-22
231f7cd jens-daniel-mueller 2024-04-17
a5911f0 jens-daniel-mueller 2024-04-17
6709afa jens-daniel-mueller 2024-04-12

[[3]]

Version Author Date
589243f jens-daniel-mueller 2024-05-15
009791f jens-daniel-mueller 2024-05-14
8c96de4 jens-daniel-mueller 2024-05-08
4b81eaf jens-daniel-mueller 2024-05-07
60abdac jens-daniel-mueller 2024-04-23
1ff6eb0 jens-daniel-mueller 2024-04-22
9ecd92e jens-daniel-mueller 2024-04-22
231f7cd jens-daniel-mueller 2024-04-17
a5911f0 jens-daniel-mueller 2024-04-17
6709afa jens-daniel-mueller 2024-04-12

[[4]]

Version Author Date
dbc1fc6 jens-daniel-mueller 2024-05-16
589243f jens-daniel-mueller 2024-05-15
009791f jens-daniel-mueller 2024-05-14
8c96de4 jens-daniel-mueller 2024-05-08
3fea035 jens-daniel-mueller 2024-05-08
4b81eaf jens-daniel-mueller 2024-05-07
1ff6eb0 jens-daniel-mueller 2024-04-22
9ecd92e jens-daniel-mueller 2024-04-22
231f7cd jens-daniel-mueller 2024-04-17
a5911f0 jens-daniel-mueller 2024-04-17
6709afa jens-daniel-mueller 2024-04-12

[[5]]

Version Author Date
5af03d1 jens-daniel-mueller 2024-05-17
dbc1fc6 jens-daniel-mueller 2024-05-16
589243f jens-daniel-mueller 2024-05-15
009791f jens-daniel-mueller 2024-05-14
8c96de4 jens-daniel-mueller 2024-05-08
4b81eaf jens-daniel-mueller 2024-05-07
60abdac jens-daniel-mueller 2024-04-23
1ff6eb0 jens-daniel-mueller 2024-04-22
9ecd92e jens-daniel-mueller 2024-04-22
231f7cd jens-daniel-mueller 2024-04-17
a5911f0 jens-daniel-mueller 2024-04-17
6709afa jens-daniel-mueller 2024-04-12

[[6]]

Version Author Date
dbc1fc6 jens-daniel-mueller 2024-05-16
589243f jens-daniel-mueller 2024-05-15
009791f jens-daniel-mueller 2024-05-14
8c96de4 jens-daniel-mueller 2024-05-08
3fea035 jens-daniel-mueller 2024-05-08
4b81eaf jens-daniel-mueller 2024-05-07
1ff6eb0 jens-daniel-mueller 2024-04-22
9ecd92e jens-daniel-mueller 2024-04-22
231f7cd jens-daniel-mueller 2024-04-17
a5911f0 jens-daniel-mueller 2024-04-17
6709afa jens-daniel-mueller 2024-04-12
pco2_product_monthly_detrended %>%
  filter(biome %in% key_biomes) %>%
  select(-c(time, fit, value)) %>% 
  pivot_wider(values_from = resid) %>%
  pivot_longer(-c(product, year, month, biome, fgco2_int))  %>%
  group_split(name) %>%
  # head(1) %>%
  map(
    ~ ggplot(data = .x,
             aes(value, fgco2_int)) +
      geom_hline(yintercept = 0) +
      geom_point(
        data = . %>% filter(year != 2023),
        aes(col = paste(min(year), max(year), sep = "-")),
        alpha = 0.2
      ) +
      geom_smooth(
        data = . %>% filter(year != 2023),
        aes(col = paste(min(year), max(year), sep = "-")),
        method = "lm",
        se = FALSE,
        fullrange = TRUE
      )  +
      scale_color_grey(name = "") +
      new_scale_color() +
      geom_path(data = . %>% filter(year == 2023),
      aes(col = as.factor(month), group = 1))  +
      geom_point(
        data = . %>% filter(year == 2023),
        aes(fill =  as.factor(month)),
        shape = 21,
        size = 3
      )  +
      scale_color_scico_d(
        palette = "buda",
        guide = guide_legend(reverse = TRUE,
                             order = 1),
        name = paste("Month\nof", 2023)
      ) +
      scale_fill_scico_d(
        palette = "buda",
        guide = guide_legend(reverse = TRUE,
                             order = 1),
        name = paste("Month\nof", 2023)
      ) +
      labs(
        y = labels_breaks("fgco2_int")$i_legend_title,
        x = labels_breaks(unique(.x$name))$i_legend_title
      ) +
      facet_grid(biome ~ product,
                 scales = "free_y") +
      theme(
        axis.title.x = element_markdown(),
        axis.title.y = element_markdown()
      )
  )
[[1]]

Version Author Date
009791f jens-daniel-mueller 2024-05-14
8c96de4 jens-daniel-mueller 2024-05-08
4b81eaf jens-daniel-mueller 2024-05-07
60abdac jens-daniel-mueller 2024-04-23
1ff6eb0 jens-daniel-mueller 2024-04-22
9ecd92e jens-daniel-mueller 2024-04-22
231f7cd jens-daniel-mueller 2024-04-17
a5911f0 jens-daniel-mueller 2024-04-17
6709afa jens-daniel-mueller 2024-04-12

[[2]]

Version Author Date
5af03d1 jens-daniel-mueller 2024-05-17
009791f jens-daniel-mueller 2024-05-14
8c96de4 jens-daniel-mueller 2024-05-08
3fea035 jens-daniel-mueller 2024-05-08
4b81eaf jens-daniel-mueller 2024-05-07
60abdac jens-daniel-mueller 2024-04-23
1ff6eb0 jens-daniel-mueller 2024-04-22
9ecd92e jens-daniel-mueller 2024-04-22
231f7cd jens-daniel-mueller 2024-04-17
a5911f0 jens-daniel-mueller 2024-04-17
6709afa jens-daniel-mueller 2024-04-12

[[3]]

Version Author Date
589243f jens-daniel-mueller 2024-05-15
009791f jens-daniel-mueller 2024-05-14
8c96de4 jens-daniel-mueller 2024-05-08
4b81eaf jens-daniel-mueller 2024-05-07
60abdac jens-daniel-mueller 2024-04-23
1ff6eb0 jens-daniel-mueller 2024-04-22
9ecd92e jens-daniel-mueller 2024-04-22
231f7cd jens-daniel-mueller 2024-04-17
a5911f0 jens-daniel-mueller 2024-04-17
6709afa jens-daniel-mueller 2024-04-12

[[4]]

Version Author Date
dbc1fc6 jens-daniel-mueller 2024-05-16
589243f jens-daniel-mueller 2024-05-15
009791f jens-daniel-mueller 2024-05-14
8c96de4 jens-daniel-mueller 2024-05-08
3fea035 jens-daniel-mueller 2024-05-08
4b81eaf jens-daniel-mueller 2024-05-07
1ff6eb0 jens-daniel-mueller 2024-04-22
9ecd92e jens-daniel-mueller 2024-04-22
231f7cd jens-daniel-mueller 2024-04-17
a5911f0 jens-daniel-mueller 2024-04-17
6709afa jens-daniel-mueller 2024-04-12

[[5]]

Version Author Date
5af03d1 jens-daniel-mueller 2024-05-17
dbc1fc6 jens-daniel-mueller 2024-05-16
589243f jens-daniel-mueller 2024-05-15
009791f jens-daniel-mueller 2024-05-14
8c96de4 jens-daniel-mueller 2024-05-08
4b81eaf jens-daniel-mueller 2024-05-07
60abdac jens-daniel-mueller 2024-04-23
1ff6eb0 jens-daniel-mueller 2024-04-22
9ecd92e jens-daniel-mueller 2024-04-22
231f7cd jens-daniel-mueller 2024-04-17
a5911f0 jens-daniel-mueller 2024-04-17
6709afa jens-daniel-mueller 2024-04-12

[[6]]

Version Author Date
dbc1fc6 jens-daniel-mueller 2024-05-16
589243f jens-daniel-mueller 2024-05-15
009791f jens-daniel-mueller 2024-05-14
8c96de4 jens-daniel-mueller 2024-05-08
3fea035 jens-daniel-mueller 2024-05-08
4b81eaf jens-daniel-mueller 2024-05-07
1ff6eb0 jens-daniel-mueller 2024-04-22
9ecd92e jens-daniel-mueller 2024-04-22
231f7cd jens-daniel-mueller 2024-04-17
a5911f0 jens-daniel-mueller 2024-04-17
6709afa jens-daniel-mueller 2024-04-12

pCO2 decomposition

pco2_product_decomposition <-
  fco2_decomposition(pco2_product_annual_detrended %>%
                       select(-c(time)),
                     biome, year, month)

pco2_product_decomposition %>%
  filter(biome %in% "Global") %>%
  group_split(biome) %>%
  # head(1) %>%
  map(
    ~ p_season(df = .x,
               title  = paste("Anomalies from predicted monthly mean |", .x$biome))
  )
[[1]]

Version Author Date
5af03d1 jens-daniel-mueller 2024-05-17
dbc1fc6 jens-daniel-mueller 2024-05-16
1e4c153 jens-daniel-mueller 2024-05-14
009791f jens-daniel-mueller 2024-05-14
pco2_product_decomposition %>%
  filter(biome %in% super_biomes) %>%
  group_split(biome) %>%
  # head(1) %>%
  map(
    ~ p_season(df = .x,
               title  = paste("Anomalies from predicted monthly mean |", .x$biome))
  )
[[1]]

Version Author Date
5af03d1 jens-daniel-mueller 2024-05-17
dbc1fc6 jens-daniel-mueller 2024-05-16
1e4c153 jens-daniel-mueller 2024-05-14
009791f jens-daniel-mueller 2024-05-14

[[2]]

Version Author Date
5af03d1 jens-daniel-mueller 2024-05-17
dbc1fc6 jens-daniel-mueller 2024-05-16
1e4c153 jens-daniel-mueller 2024-05-14
009791f jens-daniel-mueller 2024-05-14
pco2_product_decomposition %>%
  filter(biome %in% key_biomes) %>%
  group_split(biome) %>%
  # head(1) %>%
  map(
    ~ p_season(df = .x,
               title  = paste("Anomalies from predicted monthly mean |", .x$biome))
  )
[[1]]

Version Author Date
5af03d1 jens-daniel-mueller 2024-05-17
dbc1fc6 jens-daniel-mueller 2024-05-16
1e4c153 jens-daniel-mueller 2024-05-14
009791f jens-daniel-mueller 2024-05-14

[[2]]

Version Author Date
5af03d1 jens-daniel-mueller 2024-05-17
dbc1fc6 jens-daniel-mueller 2024-05-16
1e4c153 jens-daniel-mueller 2024-05-14

[[3]]

Version Author Date
5af03d1 jens-daniel-mueller 2024-05-17
dbc1fc6 jens-daniel-mueller 2024-05-16
1e4c153 jens-daniel-mueller 2024-05-14

[[4]]

Version Author Date
5af03d1 jens-daniel-mueller 2024-05-17
dbc1fc6 jens-daniel-mueller 2024-05-16
1e4c153 jens-daniel-mueller 2024-05-14

Flux attribution

Seasonal

pco2_product_biome_monthly_flux_attribution <-
  full_join(pco2_product_coarse_monthly_flux_attribution,
            biome_mask,
            relationship = "many-to-many") %>% 
  group_by(product, month, biome, name) %>% 
  summarise(resid = mean(resid, na.rm = TRUE)) %>% 
  ungroup()

pco2_product_biome_annual_flux_attribution <-
  pco2_product_biome_monthly_flux_attribution %>%
  group_by(product, biome, name) %>%
  summarise(resid = mean(resid)) %>%
  ungroup()


ggplot() +
  geom_hline(yintercept = 0) +
  geom_col(
    data = pco2_product_biome_annual_flux_attribution %>%
      filter(biome %in% c("Global", key_biomes)),
    aes("", resid, fill = product),
    position = position_dodge(width = 1),
    alpha = 0.5, col = "grey30"
  ) +
  geom_point(
    data = pco2_product_biome_monthly_flux_attribution %>%
      filter(biome %in% c("Global", key_biomes)),
    aes("", resid, fill = product),
    position = position_dodge(width = 1),
    shape = 21, alpha = 0.5, col = "grey30"
  ) +
  scale_fill_light() +
  scale_color_light() +
  labs(y = labels_breaks(unique("fgco2"))$i_legend_title) +
  facet_grid(biome ~ name,
             labeller = labeller(name = x_axis_labels),
             switch = "x") +
  theme(
    legend.title = element_blank(),
    axis.text.x = element_blank(),
    axis.ticks.x = element_blank(),
    axis.title.x = element_blank(),
    axis.title.y = element_markdown(),
    strip.text.x.bottom = element_markdown(),
    strip.placement = "outside",
    strip.background.x = element_blank(),
    legend.position = "top"
  )

Version Author Date
dbc1fc6 jens-daniel-mueller 2024-05-16
b7d0689 jens-daniel-mueller 2024-05-15
00ad9d5 jens-daniel-mueller 2024-05-15
47f8868 jens-daniel-mueller 2024-05-15
pco2_product_biome_monthly_flux_attribution %>%
  filter(biome %in% c("Global", key_biomes)) %>%
  ggplot() +
  geom_hline(yintercept = 0) +
  geom_path(
    aes(month, resid, col = product)
  ) +
  geom_point(
    aes(month, resid, fill = product),
    shape = 21,
    alpha = 0.5,
    col = "grey30"
  ) +
  scale_fill_okabeito() +
  scale_color_okabeito() +
  labs(y = labels_breaks(unique("fgco2"))$i_legend_title) +
  facet_grid(biome ~ name,
             labeller = labeller(name = x_axis_labels),
             switch = "x") +
  theme(
    legend.title = element_blank(),
    axis.text.x = element_blank(),
    axis.ticks.x = element_blank(),
    axis.title.x = element_blank(),
    axis.title.y = element_markdown(),
    strip.text.x.bottom = element_markdown(),
    strip.placement = "outside",
    strip.background.x = element_blank(),
    legend.position = "top"
  )

Version Author Date
dbc1fc6 jens-daniel-mueller 2024-05-16
b7d0689 jens-daniel-mueller 2024-05-15
00ad9d5 jens-daniel-mueller 2024-05-15
47f8868 jens-daniel-mueller 2024-05-15
# biome_area <- biome_mask %>% 
#   mutate(area = earth_surf(lat, lon)) %>% 
#   group_by(biome) %>% 
#   summarise(area = sum(area)) %>% 
#   ungroup()
# 
# pco2_product_monthly_flux_attribution <-
#   full_join(
#     pco2_product_monthly_flux_attribution,
#     biome_area)
pco2_product_monthly_flux_attribution <-
  flux_attribution(pco2_product_monthly_detrended %>%
                     select(-c(time)),
                   year, month, biome)

# biome_area <- biome_mask %>% 
#   mutate(area = earth_surf(lat, lon)) %>% 
#   group_by(biome) %>% 
#   summarise(area = sum(area)) %>% 
#   ungroup()
# 
# pco2_product_monthly_flux_attribution <-
#   full_join(
#     pco2_product_monthly_flux_attribution,
#     biome_area)


pco2_product_monthly_flux_attribution %>%
  filter(biome %in% "Global") %>% 
  group_split(biome) %>%
  # head(1) %>%
  map(
    ~ p_season(
      df = .x,
      title  = paste("Anomalies from predicted monthly mean |", .x$biome)
    ) +
      facet_grid(
        name ~ product,
        labeller = labeller(name = x_axis_labels),
        switch = "y"
      ) +
      theme(
        strip.text.y.left = element_markdown(),
        strip.placement = "outside",
        strip.background.y = element_blank(),
        axis.title.y = element_blank(),
        legend.title = element_blank()
      )
  )
[[1]]

Version Author Date
dbc1fc6 jens-daniel-mueller 2024-05-16
aea0b99 jens-daniel-mueller 2024-05-16
3310cf6 jens-daniel-mueller 2024-05-16
b7d0689 jens-daniel-mueller 2024-05-15
pco2_product_monthly_flux_attribution %>%
  filter(biome %in% super_biomes) %>% 
  group_split(biome) %>%
  # head(1) %>%
  map(
    ~ p_season(
      df = .x,
      title  = paste("Anomalies from predicted monthly mean |", .x$biome)
    ) +
      facet_grid(
        name ~ product,
        labeller = labeller(name = x_axis_labels),
        switch = "y"
      ) +
      theme(
        strip.text.y.left = element_markdown(),
        strip.placement = "outside",
        strip.background.y = element_blank(),
        axis.title.y = element_blank(),
        legend.title = element_blank()
      )
  )
[[1]]

Version Author Date
dbc1fc6 jens-daniel-mueller 2024-05-16
aea0b99 jens-daniel-mueller 2024-05-16
3310cf6 jens-daniel-mueller 2024-05-16
b7d0689 jens-daniel-mueller 2024-05-15

[[2]]

Version Author Date
dbc1fc6 jens-daniel-mueller 2024-05-16
aea0b99 jens-daniel-mueller 2024-05-16
3310cf6 jens-daniel-mueller 2024-05-16
b7d0689 jens-daniel-mueller 2024-05-15
pco2_product_monthly_flux_attribution %>%
  filter(biome %in% key_biomes) %>% 
  group_split(biome) %>%
  # head(1) %>%
  map(
    ~ p_season(
      df = .x,
      title  = paste("Anomalies from predicted monthly mean |", .x$biome)
    ) +
      facet_grid(
        name ~ product,
        labeller = labeller(name = x_axis_labels),
        switch = "y"
      ) +
      theme(
        strip.text.y.left = element_markdown(),
        strip.placement = "outside",
        strip.background.y = element_blank(),
        axis.title.y = element_blank(),
        legend.title = element_blank()
      )
  )
[[1]]

Version Author Date
dbc1fc6 jens-daniel-mueller 2024-05-16
aea0b99 jens-daniel-mueller 2024-05-16
3310cf6 jens-daniel-mueller 2024-05-16
b7d0689 jens-daniel-mueller 2024-05-15

[[2]]

Version Author Date
dbc1fc6 jens-daniel-mueller 2024-05-16
aea0b99 jens-daniel-mueller 2024-05-16
3310cf6 jens-daniel-mueller 2024-05-16
b7d0689 jens-daniel-mueller 2024-05-15

[[3]]

Version Author Date
dbc1fc6 jens-daniel-mueller 2024-05-16
aea0b99 jens-daniel-mueller 2024-05-16
3310cf6 jens-daniel-mueller 2024-05-16
b7d0689 jens-daniel-mueller 2024-05-15

[[4]]

Version Author Date
dbc1fc6 jens-daniel-mueller 2024-05-16
aea0b99 jens-daniel-mueller 2024-05-16
3310cf6 jens-daniel-mueller 2024-05-16
b7d0689 jens-daniel-mueller 2024-05-15

Annual

pco2_product_monthly_flux_attribution_annual <-
  pco2_product_monthly_flux_attribution %>%
  group_by(product, year, biome, name) %>% 
  summarise(resid = mean(resid)) %>% 
  ungroup()

pco2_product_monthly_flux_attribution_annual <-
full_join(
pco2_product_monthly_flux_attribution_annual %>% 
  filter(year == 2023) %>% 
  select(-year),
pco2_product_monthly_flux_attribution_annual %>% 
  filter(year != 2023) %>% 
  group_by(product, biome, name) %>% 
  summarise(resid_mean = mean(abs(resid))) %>% 
  ungroup())

pco2_product_monthly_flux_attribution_annual %>%
  filter(biome %in% "Global") %>% 
  group_split(biome) %>%
  # head(1) %>%
  map(
    ~ ggplot(data = .x) +
      geom_col(aes("x", resid, fill = product),
               position = "dodge2") +
      scale_fill_light() +
      geom_col(
        aes(
          "x",
          resid_mean * sign(resid),
          group = product,
          col = paste0("Mean\nexcl.",2023)
        ),
        position = "dodge2",
        fill = "transparent"
      ) +
      labs(y = labels_breaks(unique("fgco2"))$i_legend_title,
           title = .x$biome) +
      facet_grid(
        .~name,
        labeller = labeller(name = x_axis_labels),
        switch = "x"
      ) +
      scale_color_grey() +
      theme(
        legend.title = element_blank(),
        axis.text.x = element_blank(),
        axis.ticks.x = element_blank(),
        axis.title.x = element_blank(),
        axis.title.y = element_markdown(),
        strip.text.x.bottom = element_markdown(),
        strip.placement = "outside",
        strip.background.x = element_blank(),
        legend.position = "top"
      )
  )
[[1]]

Version Author Date
dbc1fc6 jens-daniel-mueller 2024-05-16
aea0b99 jens-daniel-mueller 2024-05-16
3310cf6 jens-daniel-mueller 2024-05-16
b7d0689 jens-daniel-mueller 2024-05-15
pco2_product_monthly_flux_attribution_annual %>%
  filter(biome %in% super_biomes) %>% 
  group_split(biome) %>%
  # head(1) %>%
  map(
    ~ ggplot(data = .x) +
      geom_col(aes("x", resid, fill = product),
               position = "dodge2") +
      scale_fill_light() +
      geom_col(
        aes(
          "x",
          resid_mean * sign(resid),
          group = product,
          col = paste0("Mean\nexcl.",2023)
        ),
        position = "dodge2",
        fill = "transparent"
      ) +
      labs(y = labels_breaks(unique("fgco2"))$i_legend_title,
           title = .x$biome) +
      facet_grid(
        .~name,
        labeller = labeller(name = x_axis_labels),
        switch = "x"
      ) +
      scale_color_grey() +
      theme(
        legend.title = element_blank(),
        axis.text.x = element_blank(),
        axis.ticks.x = element_blank(),
        axis.title.x = element_blank(),
        axis.title.y = element_markdown(),
        strip.text.x.bottom = element_markdown(),
        strip.placement = "outside",
        strip.background.x = element_blank(),
        legend.position = "top"
      )
  )
[[1]]

Version Author Date
dbc1fc6 jens-daniel-mueller 2024-05-16
aea0b99 jens-daniel-mueller 2024-05-16
3310cf6 jens-daniel-mueller 2024-05-16
b7d0689 jens-daniel-mueller 2024-05-15

[[2]]

Version Author Date
dbc1fc6 jens-daniel-mueller 2024-05-16
aea0b99 jens-daniel-mueller 2024-05-16
3310cf6 jens-daniel-mueller 2024-05-16
b7d0689 jens-daniel-mueller 2024-05-15
pco2_product_monthly_flux_attribution_annual %>%
  filter(biome %in% key_biomes) %>% 
  group_split(biome) %>%
  # head(1) %>%
  map(
    ~ ggplot(data = .x) +
      geom_col(aes("x", resid, fill = product),
               position = "dodge2") +
      scale_fill_light() +
      geom_col(
        aes(
          "x",
          resid_mean * sign(resid),
          group = product,
          col = paste0("Mean\nexcl.",2023)
        ),
        position = "dodge2",
        fill = "transparent"
      ) +
      labs(y = labels_breaks(unique("fgco2"))$i_legend_title,
           title = .x$biome) +
      facet_grid(
        .~name,
        labeller = labeller(name = x_axis_labels),
        switch = "x"
      ) +
      scale_color_grey() +
      theme(
        legend.title = element_blank(),
        axis.text.x = element_blank(),
        axis.ticks.x = element_blank(),
        axis.title.x = element_blank(),
        axis.title.y = element_markdown(),
        strip.text.x.bottom = element_markdown(),
        strip.placement = "outside",
        strip.background.x = element_blank(),
        legend.position = "top"
      )
  )
[[1]]

Version Author Date
dbc1fc6 jens-daniel-mueller 2024-05-16
aea0b99 jens-daniel-mueller 2024-05-16
3310cf6 jens-daniel-mueller 2024-05-16
b7d0689 jens-daniel-mueller 2024-05-15

[[2]]

Version Author Date
dbc1fc6 jens-daniel-mueller 2024-05-16
aea0b99 jens-daniel-mueller 2024-05-16
3310cf6 jens-daniel-mueller 2024-05-16
b7d0689 jens-daniel-mueller 2024-05-15

[[3]]

Version Author Date
dbc1fc6 jens-daniel-mueller 2024-05-16
aea0b99 jens-daniel-mueller 2024-05-16
3310cf6 jens-daniel-mueller 2024-05-16
b7d0689 jens-daniel-mueller 2024-05-15

[[4]]

Version Author Date
dbc1fc6 jens-daniel-mueller 2024-05-16
aea0b99 jens-daniel-mueller 2024-05-16
3310cf6 jens-daniel-mueller 2024-05-16
b7d0689 jens-daniel-mueller 2024-05-15

sessionInfo()
R version 4.2.2 (2022-10-31)
Platform: x86_64-pc-linux-gnu (64-bit)
Running under: openSUSE Leap 15.5

Matrix products: default
BLAS:   /usr/local/R-4.2.2/lib64/R/lib/libRblas.so
LAPACK: /usr/local/R-4.2.2/lib64/R/lib/libRlapack.so

locale:
 [1] LC_CTYPE=en_US.UTF-8       LC_NUMERIC=C              
 [3] LC_TIME=en_US.UTF-8        LC_COLLATE=en_US.UTF-8    
 [5] LC_MONETARY=en_US.UTF-8    LC_MESSAGES=en_US.UTF-8   
 [7] LC_PAPER=en_US.UTF-8       LC_NAME=C                 
 [9] LC_ADDRESS=C               LC_TELEPHONE=C            
[11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C       

attached base packages:
[1] stats     graphics  grDevices utils     datasets  methods   base     

other attached packages:
 [1] scales_1.2.1        biscale_1.0.0       ggtext_0.1.2       
 [4] khroma_1.9.0        ggnewscale_0.4.8    terra_1.7-65       
 [7] sf_1.0-9            rnaturalearth_0.1.0 geomtextpath_0.1.1 
[10] colorspace_2.0-3    marelac_2.1.10      shape_1.4.6        
[13] ggforce_0.4.1       metR_0.13.0         scico_1.3.1        
[16] patchwork_1.1.2     collapse_1.8.9      forcats_0.5.2      
[19] stringr_1.5.0       dplyr_1.1.3         purrr_1.0.2        
[22] readr_2.1.3         tidyr_1.3.0         tibble_3.2.1       
[25] ggplot2_3.4.4       tidyverse_1.3.2     workflowr_1.7.0    

loaded via a namespace (and not attached):
  [1] googledrive_2.0.0       ellipsis_0.3.2          class_7.3-20           
  [4] rprojroot_2.0.3         markdown_1.4            fs_1.5.2               
  [7] gridtext_0.1.5          rstudioapi_0.15.0       proxy_0.4-27           
 [10] farver_2.1.1            bit64_4.0.5             fansi_1.0.3            
 [13] lubridate_1.9.0         xml2_1.3.3              splines_4.2.2          
 [16] codetools_0.2-18        cachem_1.0.6            knitr_1.41             
 [19] polyclip_1.10-4         jsonlite_1.8.3          gsw_1.1-1              
 [22] broom_1.0.5             dbplyr_2.2.1            compiler_4.2.2         
 [25] httr_1.4.4              backports_1.4.1         Matrix_1.5-3           
 [28] assertthat_0.2.1        fastmap_1.1.0           gargle_1.2.1           
 [31] cli_3.6.1               later_1.3.0             tweenr_2.0.2           
 [34] htmltools_0.5.3         tools_4.2.2             rnaturalearthdata_0.1.0
 [37] gtable_0.3.1            glue_1.6.2              Rcpp_1.0.11            
 [40] cellranger_1.1.0        jquerylib_0.1.4         vctrs_0.6.4            
 [43] nlme_3.1-160            xfun_0.35               ps_1.7.2               
 [46] rvest_1.0.3             timechange_0.1.1        lifecycle_1.0.3        
 [49] googlesheets4_1.0.1     oce_1.7-10              getPass_0.2-2          
 [52] MASS_7.3-58.1           vroom_1.6.0             hms_1.1.2              
 [55] promises_1.2.0.1        parallel_4.2.2          yaml_2.3.6             
 [58] memoise_2.0.1           sass_0.4.4              stringi_1.7.8          
 [61] highr_0.9               e1071_1.7-12            checkmate_2.1.0        
 [64] commonmark_1.8.1        rlang_1.1.1             pkgconfig_2.0.3        
 [67] systemfonts_1.0.4       evaluate_0.18           lattice_0.20-45        
 [70] SolveSAPHE_2.1.0        labeling_0.4.2          bit_4.0.5              
 [73] processx_3.8.0          tidyselect_1.2.0        here_1.0.1             
 [76] seacarb_3.3.1           magrittr_2.0.3          R6_2.5.1               
 [79] generics_0.1.3          DBI_1.1.3               mgcv_1.8-41            
 [82] pillar_1.9.0            haven_2.5.1             whisker_0.4            
 [85] withr_2.5.0             units_0.8-0             sp_1.5-1               
 [88] modelr_0.1.10           crayon_1.5.2            KernSmooth_2.23-20     
 [91] utf8_1.2.2              tzdb_0.3.0              rmarkdown_2.18         
 [94] grid_4.2.2              readxl_1.4.1            data.table_1.14.6      
 [97] callr_3.7.3             git2r_0.30.1            reprex_2.0.2           
[100] digest_0.6.30           classInt_0.4-8          httpuv_1.6.6           
[103] textshaping_0.3.6       munsell_0.5.0           bslib_0.4.1