Files
base64
byteorder
bytes
cfg_if
crossbeam_deque
crossbeam_epoch
crossbeam_queue
crossbeam_utils
fnv
futures
futures_cpupool
httparse
hyper
iovec
language_tags
lazy_static
libc
lock_api
log
maybe_uninit
memoffset
mime
mio
mio_uds
net2
num_cpus
parking_lot
parking_lot_core
percent_encoding
proc_macro2
quote
rand
relay
rfsapi
safemem
scoped_tls
scopeguard
serde
serde_derive
slab
smallvec
syn
take
time
tokio
tokio_codec
tokio_core
tokio_current_thread
tokio_executor
tokio_fs
tokio_io
tokio_proto
tokio_reactor
tokio_service
tokio_sync
tokio_tcp
tokio_threadpool
tokio_timer
tokio_udp
tokio_uds
try_lock
unicase
unicode_xid
want
  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
use core::fmt::{Debug, Formatter, Result as FmtResult};
use core::mem::replace;

use {Async, AsyncSink, Poll, Sink, StartSend};

/// Sink that clones incoming items and forwards them to two sinks at the same time.
///
/// Backpressure from any downstream sink propagates up, which means that this sink
/// can only process items as fast as its _slowest_ downstream sink.
pub struct Fanout<A: Sink, B: Sink> {
    left: Downstream<A>,
    right: Downstream<B>
}

impl<A: Sink, B: Sink> Fanout<A, B> {
    /// Consumes this combinator, returning the underlying sinks.
    ///
    /// Note that this may discard intermediate state of this combinator,
    /// so care should be taken to avoid losing resources when this is called.
    pub fn into_inner(self) -> (A, B) {
        (self.left.sink, self.right.sink)
    }
}

impl<A: Sink + Debug, B: Sink + Debug> Debug for Fanout<A, B>
    where A::SinkItem: Debug,
          B::SinkItem: Debug
{
    fn fmt(&self, f: &mut Formatter) -> FmtResult {
        f.debug_struct("Fanout")
            .field("left", &self.left)
            .field("right", &self.right)
            .finish()
    }
}

pub fn new<A: Sink, B: Sink>(left: A, right: B) -> Fanout<A, B> {
    Fanout {
        left: Downstream::new(left),
        right: Downstream::new(right)
    }
}

impl<A, B> Sink for Fanout<A, B>
    where A: Sink,
          A::SinkItem: Clone,
          B: Sink<SinkItem=A::SinkItem, SinkError=A::SinkError>
{
    type SinkItem = A::SinkItem;
    type SinkError = A::SinkError;

    fn start_send(
        &mut self, 
        item: Self::SinkItem
    ) -> StartSend<Self::SinkItem, Self::SinkError> {
        // Attempt to complete processing any outstanding requests.
        self.left.keep_flushing()?;
        self.right.keep_flushing()?;
        // Only if both downstream sinks are ready, start sending the next item.
        if self.left.is_ready() && self.right.is_ready() {
            self.left.state = self.left.sink.start_send(item.clone())?;
            self.right.state = self.right.sink.start_send(item)?;
            Ok(AsyncSink::Ready)
        } else {
            Ok(AsyncSink::NotReady(item))
        }
    }

    fn poll_complete(&mut self) -> Poll<(), Self::SinkError> {
        let left_async = self.left.poll_complete()?;
        let right_async = self.right.poll_complete()?;
        // Only if both downstream sinks are ready, signal readiness.
        if left_async.is_ready() && right_async.is_ready() {
            Ok(Async::Ready(()))
        } else {
            Ok(Async::NotReady)
        }
    }

    fn close(&mut self) -> Poll<(), Self::SinkError> {
        let left_async = self.left.close()?;
        let right_async = self.right.close()?;
        // Only if both downstream sinks are ready, signal readiness.
        if left_async.is_ready() && right_async.is_ready() {
            Ok(Async::Ready(()))
        } else {
            Ok(Async::NotReady)
        } 
    }
}

#[derive(Debug)]
struct Downstream<S: Sink> {
    sink: S,
    state: AsyncSink<S::SinkItem>
}

impl<S: Sink> Downstream<S> {
    fn new(sink: S) -> Self {
        Downstream { sink: sink, state: AsyncSink::Ready }
    }

    fn is_ready(&self) -> bool {
        self.state.is_ready()
    }

    fn keep_flushing(&mut self) -> Result<(), S::SinkError> {
        if let AsyncSink::NotReady(item) = replace(&mut self.state, AsyncSink::Ready) {
            self.state = self.sink.start_send(item)?;
        }
        Ok(())
    }

    fn poll_complete(&mut self) -> Poll<(), S::SinkError> {
        self.keep_flushing()?;
        let async = self.sink.poll_complete()?;
        // Only if all values have been sent _and_ the underlying
        // sink is completely flushed, signal readiness.
        if self.state.is_ready() && async.is_ready() {
            Ok(Async::Ready(()))
        } else {
            Ok(Async::NotReady)
        }
    }

    fn close(&mut self) -> Poll<(), S::SinkError> {
        self.keep_flushing()?;
        // If all items have been flushed, initiate close.
        if self.state.is_ready() {
            self.sink.close()
        } else {
            Ok(Async::NotReady)
        }
    }
}