Files
base64
byteorder
bytes
cfg_if
crossbeam_deque
crossbeam_epoch
crossbeam_queue
crossbeam_utils
fnv
futures
futures_cpupool
httparse
hyper
iovec
language_tags
lazy_static
libc
lock_api
log
maybe_uninit
memoffset
mime
mio
mio_uds
net2
num_cpus
parking_lot
parking_lot_core
percent_encoding
proc_macro2
quote
rand
relay
rfsapi
safemem
scoped_tls
scopeguard
serde
serde_derive
slab
smallvec
syn
take
time
tokio
tokio_codec
tokio_core
tokio_current_thread
tokio_executor
tokio_fs
tokio_io
tokio_proto
tokio_reactor
tokio_service
tokio_sync
tokio_tcp
tokio_threadpool
tokio_timer
tokio_udp
tokio_uds
try_lock
unicase
unicode_xid
want
  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
// Copyright 2013 The Rust Project Developers. See the COPYRIGHT
// file at the top-level directory of this distribution and at
// http://rust-lang.org/COPYRIGHT.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.

//! Sampling from random distributions.
//!
//! This is a generalization of `Rand` to allow parameters to control the
//! exact properties of the generated values, e.g. the mean and standard
//! deviation of a normal distribution. The `Sample` trait is the most
//! general, and allows for generating values that change some state
//! internally. The `IndependentSample` trait is for generating values
//! that do not need to record state.

pub use rand4::distributions::Range;
pub use rand4::distributions::{Gamma, ChiSquared, FisherF, StudentT};
pub use rand4::distributions::{Normal, LogNormal};
pub use rand4::distributions::Exp;

pub use rand4::distributions::{range, gamma, normal, exponential};

pub use rand4::distributions::{Sample, IndependentSample, RandSample};
pub use rand4::distributions::{Weighted, WeightedChoice};

#[cfg(test)]
mod tests {

    use {Rng, Rand};
    use super::{RandSample, WeightedChoice, Weighted, Sample, IndependentSample};

    #[derive(PartialEq, Debug)]
    struct ConstRand(usize);
    impl Rand for ConstRand {
        fn rand<R: Rng>(_: &mut R) -> ConstRand {
            ConstRand(0)
        }
    }

    // 0, 1, 2, 3, ...
    struct CountingRng { i: u32 }
    impl Rng for CountingRng {
        fn next_u32(&mut self) -> u32 {
            self.i += 1;
            self.i - 1
        }
        fn next_u64(&mut self) -> u64 {
            self.next_u32() as u64
        }
    }

    #[test]
    fn test_rand_sample() {
        let mut rand_sample = RandSample::<ConstRand>::new();

        assert_eq!(rand_sample.sample(&mut ::test::rng()), ConstRand(0));
        assert_eq!(rand_sample.ind_sample(&mut ::test::rng()), ConstRand(0));
    }
    #[test]
    fn test_weighted_choice() {
        // this makes assumptions about the internal implementation of
        // WeightedChoice, specifically: it doesn't reorder the items,
        // it doesn't do weird things to the RNG (so 0 maps to 0, 1 to
        // 1, internally; modulo a modulo operation).

        macro_rules! t {
            ($items:expr, $expected:expr) => {{
                let mut items = $items;
                let wc = WeightedChoice::new(&mut items);
                let expected = $expected;

                let mut rng = CountingRng { i: 0 };

                for &val in expected.iter() {
                    assert_eq!(wc.ind_sample(&mut rng), val)
                }
            }}
        }

        t!(vec!(Weighted { weight: 1, item: 10}), [10]);

        // skip some
        t!(vec!(Weighted { weight: 0, item: 20},
                Weighted { weight: 2, item: 21},
                Weighted { weight: 0, item: 22},
                Weighted { weight: 1, item: 23}),
           [21,21, 23]);

        // different weights
        t!(vec!(Weighted { weight: 4, item: 30},
                Weighted { weight: 3, item: 31}),
           [30,30,30,30, 31,31,31]);

        // check that we're binary searching
        // correctly with some vectors of odd
        // length.
        t!(vec!(Weighted { weight: 1, item: 40},
                Weighted { weight: 1, item: 41},
                Weighted { weight: 1, item: 42},
                Weighted { weight: 1, item: 43},
                Weighted { weight: 1, item: 44}),
           [40, 41, 42, 43, 44]);
        t!(vec!(Weighted { weight: 1, item: 50},
                Weighted { weight: 1, item: 51},
                Weighted { weight: 1, item: 52},
                Weighted { weight: 1, item: 53},
                Weighted { weight: 1, item: 54},
                Weighted { weight: 1, item: 55},
                Weighted { weight: 1, item: 56}),
           [50, 51, 52, 53, 54, 55, 56]);
    }

    #[test]
    fn test_weighted_clone_initialization() {
        let initial : Weighted<u32> = Weighted {weight: 1, item: 1};
        let clone = initial.clone();
        assert_eq!(initial.weight, clone.weight);
        assert_eq!(initial.item, clone.item);
    }

    #[test] #[should_panic]
    fn test_weighted_clone_change_weight() {
        let initial : Weighted<u32> = Weighted {weight: 1, item: 1};
        let mut clone = initial.clone();
        clone.weight = 5;
        assert_eq!(initial.weight, clone.weight);
    }

    #[test] #[should_panic]
    fn test_weighted_clone_change_item() {
        let initial : Weighted<u32> = Weighted {weight: 1, item: 1};
        let mut clone = initial.clone();
        clone.item = 5;
        assert_eq!(initial.item, clone.item);

    }

    #[test] #[should_panic]
    fn test_weighted_choice_no_items() {
        WeightedChoice::<isize>::new(&mut []);
    }
    #[test] #[should_panic]
    fn test_weighted_choice_zero_weight() {
        WeightedChoice::new(&mut [Weighted { weight: 0, item: 0},
                                  Weighted { weight: 0, item: 1}]);
    }
    #[test] #[should_panic]
    fn test_weighted_choice_weight_overflows() {
        let x = ::std::u32::MAX / 2; // x + x + 2 is the overflow
        WeightedChoice::new(&mut [Weighted { weight: x, item: 0 },
                                  Weighted { weight: 1, item: 1 },
                                  Weighted { weight: x, item: 2 },
                                  Weighted { weight: 1, item: 3 }]);
    }
}