Processing math: 100%

Last updated: 2020-10-20

Checks: 7 0

Knit directory: single-cell-topics/analysis/

This reproducible R Markdown analysis was created with workflowr (version 1.6.2.9000). The Checks tab describes the reproducibility checks that were applied when the results were created. The Past versions tab lists the development history.


Great! Since the R Markdown file has been committed to the Git repository, you know the exact version of the code that produced these results.

Great job! The global environment was empty. Objects defined in the global environment can affect the analysis in your R Markdown file in unknown ways. For reproduciblity it’s best to always run the code in an empty environment.

The command set.seed(1) was run prior to running the code in the R Markdown file. Setting a seed ensures that any results that rely on randomness, e.g. subsampling or permutations, are reproducible.

Great job! Recording the operating system, R version, and package versions is critical for reproducibility.

Nice! There were no cached chunks for this analysis, so you can be confident that you successfully produced the results during this run.

Great job! Using relative paths to the files within your workflowr project makes it easier to run your code on other machines.

Great! You are using Git for version control. Tracking code development and connecting the code version to the results is critical for reproducibility.

The results in this page were generated with repository version 3597a5e. See the Past versions tab to see a history of the changes made to the R Markdown and HTML files.

Note that you need to be careful to ensure that all relevant files for the analysis have been committed to Git prior to generating the results (you can use wflow_publish or wflow_git_commit). workflowr only checks the R Markdown file, but you know if there are other scripts or data files that it depends on. Below is the status of the Git repository when the results were generated:


Ignored files:
    Ignored:    analysis/figure/
    Ignored:    data/droplet.RData
    Ignored:    data/pbmc_68k.RData
    Ignored:    data/pbmc_purified.RData
    Ignored:    data/pulseseq.RData
    Ignored:    output/droplet/diff-count-droplet.RData
    Ignored:    output/droplet/fits-droplet.RData
    Ignored:    output/droplet/rds/
    Ignored:    output/pbmc-68k/fits-pbmc-68k.RData
    Ignored:    output/pbmc-68k/rds/
    Ignored:    output/pbmc-purified/fits-pbmc-purified.RData
    Ignored:    output/pbmc-purified/rds/
    Ignored:    output/pulseseq/diff-count-pulseseq.RData
    Ignored:    output/pulseseq/fits-pulseseq.RData
    Ignored:    output/pulseseq/rds/

Note that any generated files, e.g. HTML, png, CSS, etc., are not included in this status report because it is ok for generated content to have uncommitted changes.


These are the previous versions of the repository in which changes were made to the R Markdown (analysis/plots_tracheal_epithelium.Rmd) and HTML (docs/plots_tracheal_epithelium.html) files. If you’ve configured a remote Git repository (see ?wflow_git_remote), click on the hyperlinks in the table below to view the files as they were in that past version.

File Version Author Date Message
Rmd 3597a5e Peter Carbonetto 2020-10-20 workflowr::wflow_publish(“plots_tracheal_epithelium.Rmd”)
html fb5cb48 Peter Carbonetto 2020-10-20 Fixed some plots in plots_tracheal_epithelium analysis.
Rmd e60378e Peter Carbonetto 2020-10-20 workflowr::wflow_publish(“plots_tracheal_epithelium.Rmd”)
Rmd 199ca88 Peter Carbonetto 2020-10-17 Working on analysis of single-cell likelihoods in clusters_droplet.Rmd.
Rmd 70575e0 Peter Carbonetto 2020-10-11 Improved scatterplots in compare_cell_loglik_droplet.R.
html 9171089 Peter Carbonetto 2020-10-11 Added PCA plots to plots_tracheal_epithelium analysis showing
Rmd 56fc8f2 Peter Carbonetto 2020-10-11 workflowr::wflow_publish(“plots_tracheal_epithelium.Rmd”)
html 5ea9a86 Peter Carbonetto 2020-10-11 Re-built plots_tracheal_epithelium page with Gp2 expression plot.
Rmd b9aee6e Peter Carbonetto 2020-10-11 Added PCA plot for expression of Gp2 in droplet data.
Rmd 62834cb Peter Carbonetto 2020-10-09 Working on various exploratory analyses of the droplet and pulse-seq data.
html 09dc8fc Peter Carbonetto 2020-10-07 Build site.
Rmd 15e58e8 Peter Carbonetto 2020-10-07 workflowr::wflow_publish(“plots_tracheal_epithelium.Rmd”)
html 58bc6b6 Peter Carbonetto 2020-10-06 Updated plots_tracheal_epithelium analysis to use new fastTopics plots.
Rmd 0c02f84 Peter Carbonetto 2020-10-06 workflowr::wflow_publish(“plots_tracheal_epithelium.Rmd”, verbose = TRUE)
Rmd 5e57ced Peter Carbonetto 2020-10-03 Working on plots highlighting substructure in T+N cluster.
Rmd 6ce0228 Peter Carbonetto 2020-10-02 Working on flashier_droplet.R script.
html 8a2c99b Peter Carbonetto 2020-10-01 Build site.
Rmd 29e727c Peter Carbonetto 2020-10-01 Minor edits.
html f45cac1 Peter Carbonetto 2020-10-01 Revised text in plots_tracheal_epithelium analysis.
Rmd 3e298ef Peter Carbonetto 2020-10-01 workflowr::wflow_publish(“plots_tracheal_epithelium.Rmd”, verbose = TRUE)
html 0f9607c Peter Carbonetto 2020-09-30 Recreated volcano plots and scatterplots after a few small changes to
Rmd 833a78d Peter Carbonetto 2020-09-30 workflowr::wflow_publish(“plots_tracheal_epithelium.Rmd”, verbose = TRUE)
html bc7ea0e Peter Carbonetto 2020-09-29 In plots_tracheal_epithelium analysis, refined the plots for the basal
Rmd 470bcb7 Peter Carbonetto 2020-09-29 workflowr::wflow_publish(“plots_tracheal_epithelium.Rmd”)
html 98bfcf7 Peter Carbonetto 2020-09-29 Added plots for club cells in plots_tracheal_epithelium analysis.
Rmd 09a4a71 Peter Carbonetto 2020-09-29 workflowr::wflow_publish(“plots_tracheal_epithelium.Rmd”, verbose = TRUE)
html 0ccfc0d Peter Carbonetto 2020-09-29 Added plots for hillock cells in plots_tracheal_epithelium analysis.
Rmd 6a46c50 Peter Carbonetto 2020-09-29 workflowr::wflow_publish(“plots_tracheal_epithelium.Rmd”, verbose = TRUE)
html 9a11392 Peter Carbonetto 2020-09-29 Added plots for basal and proliferating cells to
Rmd 5dc31bc Peter Carbonetto 2020-09-29 workflowr::wflow_publish(“plots_tracheal_epithelium.Rmd”, verbose = TRUE)
html 161cb38 Peter Carbonetto 2020-09-29 Build site.
Rmd b9f3250 Peter Carbonetto 2020-09-29 workflowr::wflow_publish(“plots_tracheal_epithelium.Rmd”, verbose = TRUE)
html b3f5a08 Peter Carbonetto 2020-09-29 Fixed x and y labels in z-score scatterplots in
Rmd 0c50c27 Peter Carbonetto 2020-09-29 workflowr::wflow_publish(“plots_tracheal_epithelium.Rmd”, verbose = TRUE)
html 09d30d6 Peter Carbonetto 2020-09-29 Fixed some of the plots in the plots_tracheal_epithelium analysis.
Rmd 2db338f Peter Carbonetto 2020-09-29 workflowr::wflow_publish(“plots_tracheal_epithelium.Rmd”, verbose = TRUE)
Rmd 4dbb46b Peter Carbonetto 2020-09-28 A couple small edits to the test in the plots_tracheal_epithelium analysis.
Rmd 28f8ec5 Peter Carbonetto 2020-09-28 z-scores in zscore_scatterplot are now shown on sqrt-scale.
Rmd bd72ce4 Peter Carbonetto 2020-09-28 Improved plots for ionocytes and ciliated topics/clusters in plots_tracheal_epithelium analysis.
Rmd ff9d6ef Peter Carbonetto 2020-09-28 Added scatterplots for ciliated cells to plots_tracheal_epithelium analysis.
Rmd 1fab15a Peter Carbonetto 2020-09-28 Added plots for proliferating cells cluster to plots_tracheal_epithelium analysis.
Rmd 920c62f Peter Carbonetto 2020-09-27 Made a couple small edits to plots_tracheal_epithelium.Rmd.
Rmd 50691bf Peter Carbonetto 2020-09-26 Working on volcano plots and scatterplots for club cells in plots_tracheal_epithelium analysis.
Rmd 0e10adf Peter Carbonetto 2020-09-26 Working on volcano plots and scatterplots for basal and hillock cells in plots_tracheal_epithelium analysis.
html 6272c69 Peter Carbonetto 2020-09-26 Build site.
Rmd f9fe3eb Peter Carbonetto 2020-09-26 workflowr::wflow_publish(“plots_tracheal_epithelium.Rmd”)
Rmd 95f91d4 Peter Carbonetto 2020-09-26 Improved functions logfoldchange_scatterplot and zscores_scatterplot in plots.R.
Rmd 73ef439 Peter Carbonetto 2020-09-26 Made some improvements to zscore_scatterplot in plots.R.
Rmd 56bb5fd Peter Carbonetto 2020-09-24 Adding some scatterplots and volcano plots to plots_tracheal_epithelium analysis.
html 6a9691b Peter Carbonetto 2020-09-24 Added volcano plots for T+N celels to plots_tracheal_epithelium
Rmd 7262a96 Peter Carbonetto 2020-09-24 workflowr::wflow_publish(“plots_tracheal_epithelium.Rmd”, verbose = TRUE)
html 30194ad Peter Carbonetto 2020-09-24 Added volcano plots and scatterplot for goblet cells.
Rmd 9e59003 Peter Carbonetto 2020-09-24 workflowr::wflow_publish(“plots_tracheal_epithelium.Rmd”, verbose = TRUE)
html c0fa2db Peter Carbonetto 2020-09-24 Revised plots for ionocytes cluster in plots_tracheal_epithelium
Rmd 81506fb Peter Carbonetto 2020-09-24 workflowr::wflow_publish(“plots_tracheal_epithelium.Rmd”, verbose = TRUE)
html 78d64e9 Peter Carbonetto 2020-09-23 Added ionocytes volcano plot to plots_tracheal_epithelium.
Rmd f0bdbda Peter Carbonetto 2020-09-23 workflowr::wflow_publish(“plots_tracheal_epithelium.Rmd”, verbose = TRUE)
html 361eded Peter Carbonetto 2020-09-23 Added text to accompany ciliated cells volcano plots.
Rmd 8198c07 Peter Carbonetto 2020-09-23 workflowr::wflow_publish(“plots_tracheal_epithelium.Rmd”, verbose = TRUE)
html 23f87bb Peter Carbonetto 2020-09-23 Improved volcano plots for ciliated cell type in
Rmd 516a32e Peter Carbonetto 2020-09-23 workflowr::wflow_publish(“plots_tracheal_epithelium.Rmd”, verbose = TRUE)
html 0ed5061 Peter Carbonetto 2020-09-22 Added some rough, first-draft volcano plots to
Rmd 6ccf998 Peter Carbonetto 2020-09-22 workflowr::wflow_publish(“plots_tracheal_epithelium.Rmd”, verbose = TRUE)
Rmd de36d31 Peter Carbonetto 2020-09-22 Added volcano plots for ciliated cells to plots_tracheal_epithelium analysis.
Rmd 082352a Peter Carbonetto 2020-09-22 Added steps to plots_tracheal_epithelium analysis to compute differential expression statistics.
html 06d0b30 Peter Carbonetto 2020-09-22 I’m starting to revamp the plots_tracheal_epithelium analysis.
Rmd 0877a1f Peter Carbonetto 2020-09-22 workflowr::wflow_publish(“plots_tracheal_epithelium.Rmd”)
Rmd 5af46f1 Peter Carbonetto 2020-09-20 Working on Structure plot for droplet data.
Rmd c072577 Peter Carbonetto 2020-09-19 Re-created structure plot for pulseseq data.
Rmd 942486b Peter Carbonetto 2020-09-18 Fixing merge issue.
Rmd 8cf758e Peter Carbonetto 2020-09-12 Working on improvements to clustering of pulse-seq data.
Rmd a128de5 Peter Carbonetto 2020-09-12 Revamping the analysis of the pulseseq data in plots_tracheal_epithelium.
Rmd 3ab7da1 Peter Carbonetto 2020-08-25 A few minor edits.
html f2e0b23 Peter Carbonetto 2020-08-25 Fixed dimensions of PCA plots in plots_tracheal_epithelium analysis.
Rmd 7b59815 Peter Carbonetto 2020-08-25 workflowr::wflow_publish(“plots_tracheal_epithelium.Rmd”)
html 5589611 Peter Carbonetto 2020-08-25 Added PCA plots and structure plots from pulseseq data.
Rmd b731a4a Peter Carbonetto 2020-08-25 workflowr::wflow_publish(“plots_tracheal_epithelium.Rmd”)
html c3c1b12 Peter Carbonetto 2020-08-25 Build site.
Rmd 2defe6d Peter Carbonetto 2020-08-25 Added crosstab plot to plots_tracheal_epithelium analysis.
html 97c13c2 Peter Carbonetto 2020-08-25 Build site.
Rmd e11855b Peter Carbonetto 2020-08-25 Working on revised analysis of droplet and pulse-seq data sets.
html e11855b Peter Carbonetto 2020-08-25 Working on revised analysis of droplet and pulse-seq data sets.
Rmd bf23ca0 Peter Carbonetto 2020-08-20 Added manual labeling of purified PBMC data to plots_pbmc analysis.
Rmd 077d3d5 Peter Carbonetto 2020-08-20 Added k=9 and k=11 pulseseq fits to plots_tracheal_epithelium analysis.
html 0ce9604 Peter Carbonetto 2020-08-20 Re-built plots_tracheal_epithelium with fastTopics 0.3-162.
Rmd 961570e Peter Carbonetto 2020-08-20 wflow_publish(“plots_tracheal_epithelium.Rmd”)
html b17bfa4 Peter Carbonetto 2020-08-19 Added pulseseq PCA plots to plots_tracheal_epithelium analysis.
Rmd 76dc0c6 Peter Carbonetto 2020-08-19 wflow_publish(“plots_tracheal_epithelium.Rmd”)
Rmd c70612f Peter Carbonetto 2020-08-19 Revised structure plot settings for abundant droplet samples in plots_tracheal_epithelium.
html adda33f Peter Carbonetto 2020-08-19 Fixed another structure plot in plots_tracheal_epithelium analysis.
Rmd 29a9258 Peter Carbonetto 2020-08-19 wflow_publish(“plots_tracheal_epithelium.Rmd”)
html 0a16b60 Peter Carbonetto 2020-08-19 Fixed structure plot in plots_tracheal_epithelium analysis.
Rmd 3a7bd74 Peter Carbonetto 2020-08-19 wflow_publish(“plots_tracheal_epithelium.Rmd”)
html f4bdf19 Peter Carbonetto 2020-08-19 Added explanatory text and improved PC-based manual clustering of
Rmd c7b77ee Peter Carbonetto 2020-08-19 wflow_publish(“plots_tracheal_epithelium.Rmd”)
Rmd 70a4a60 Peter Carbonetto 2020-08-19 Added note to plots_tracheal_epithelium.Rmd.
html fb21b3b Peter Carbonetto 2020-08-19 Added very initial Structure plots to plots_tracheal_epithelium analysis.
Rmd d35cb03 Peter Carbonetto 2020-08-19 wflow_publish(“plots_tracheal_epithelium.Rmd”)
html 368a74a Peter Carbonetto 2020-08-19 Added some text to plots_tracheal_epithelium analysis.
Rmd 223406b Peter Carbonetto 2020-08-19 wflow_publish(“plots_tracheal_epithelium.Rmd”)
html aca46cc Peter Carbonetto 2020-08-19 Added manual clustering of droplet samples based on PCs.
Rmd 38f811b Peter Carbonetto 2020-08-19 wflow_publish(“plots_tracheal_epithelium.Rmd”)
Rmd 343747e Peter Carbonetto 2020-08-19 Small edit to figure dimensions.
html 5a35bbd Peter Carbonetto 2020-08-19 Added labeled PCA plot; adjusted plot dimensions in
Rmd fb91075 Peter Carbonetto 2020-08-19 wflow_publish(“plots_tracheal_epithelium.Rmd”)
html 8b9b528 Peter Carbonetto 2020-08-19 Added more PCA plots to plots_tracheal_epithelium analysis.
Rmd ee7cbf1 Peter Carbonetto 2020-08-19 wflow_publish(“plots_tracheal_epithelium.Rmd”)
html c517ea2 Peter Carbonetto 2020-08-18 Small fix to one of the PCA plots in plots_tracheal_epithelium.
Rmd 8f5c210 Peter Carbonetto 2020-08-18 wflow_publish(“plots_tracheal_epithelium.Rmd”)
html 01afbd2 Peter Carbonetto 2020-08-18 Added some PC plots to the plots_tracheal_epithelium analysis.
Rmd f1c7d02 Peter Carbonetto 2020-08-18 wflow_publish(“plots_tracheal_epithelium.Rmd”)
html 0a04fc1 Peter Carbonetto 2020-08-18 Added abundance plots to plots_tracheal_epithelium analysis.
Rmd f914f7e Peter Carbonetto 2020-08-18 wflow_publish(“plots_tracheal_epithelium.Rmd”)
Rmd 61917ad Peter Carbonetto 2020-08-18 Working on new analysis, plots_tracheal_epithelium.Rmd.

Here we closely examine the topic modeling results for the two epithelial airway data sets (droplet and pulse-seq), and investigate the benefits of modeling single cells as mixtures of gene expression programs in these data sets. In particular, we compare differential expression in clusters vs. topics.

Load the packages used in the analysis below, as well as additional functions that we will use to generate some of the plots.

library(Matrix)
library(dplyr)
library(fastTopics)
library(ggplot2)
library(ggrepel)
library(cowplot)
source("../code/plots.R")

Droplet data

Load the smaller “droplet” data set, the k=7 Poisson NMF model fit for these data, the 8 clusters identified in the clustering analysis, and the results of the differential expression analysis.

load("../data/droplet.RData")
load("../output/droplet/diff-count-droplet.RData")
counts_droplet <- counts
samples_droplet <- readRDS("../output/droplet/clustering-droplet.rds")
fit_droplet <- readRDS("../output/droplet/rds/fit-droplet-scd-ex-k=7.rds")$fit
diff_count_droplet <- diff_count_topics
diff_count_clusters_droplet <- diff_count_clusters
diff_count_club_droplet <- diff_count_club
diff_count_basal_droplet <- diff_count_basal
rm(samples,counts)
rm(diff_count_topics,diff_count_clusters,diff_count_club,diff_count_basal)

For reference, we show here the Structure plot from the clustering analysis of the droplet data. This Structure plot summarizes the topic proportions in each of the 8 subsets (including the background cluster).

It can also be helpful to view the cluster assignments projected onto the principal components of the topic proportions:

These clusters closely correspond to cell types. To illustrate this point, here we layer the PCA plots with expression of cell-type-specific genes such as Cdhr3 for ciliated cells.

abundant <- c("B","C","B+C","H")
rare     <- c("Cil","T+N","G","U")
rows1 <- which(is.element(samples_droplet$cluster,abundant))
rows2 <- which(is.element(samples_droplet$cluster,rare))
fit1  <- select(poisson2multinom(fit_droplet),loadings = rows1)
fit2  <- select(poisson2multinom(fit_droplet),loadings = rows2)
pp1 <- pca_plot(fit1,pcs = 1:2,fill = log10(counts_droplet[rows1,"Krt5"])) +
       labs(title = "Krt5 (basal)",fill = "log10(count)")
pp2 <- pca_plot(fit1,pcs = 1:2,fill = log10(counts_droplet[rows1,"Scgb1a1"])) +
       labs(title = "Scgb1a1 (club)",fill = "log10(count)")
pp3 <- pca_plot(fit1,pcs = 1:2,fill = log10(counts_droplet[rows1,"Krt13"])) +
       labs(title = "Krt13 (hillock)",fill = "log10(count)")
pp4 <- pca_plot(fit2,pcs = 1:2,fill = log10(counts_droplet[rows2,"Cdhr3"])) +
       labs(title = "Cdhr3 (ciliated)",fill = "log10(count)")
pp5 <- pca_plot(fit2,pcs = 1:2,fill = log10(counts_droplet[rows2,"Chga"])) +
       labs(title = "Chga (neuroendocrine)",fill = "log10(count)")
pp6 <- pca_plot(fit2,pcs = 1:2,fill = log10(counts_droplet[rows2,"Gnat3"])) +
       labs(title = "Gnat3 (tuft)",fill = "log10(count)")
pp7 <- pca_plot(fit2,pcs = 1:2,fill = log10(counts_droplet[rows2,"Gp2"])) +
       labs(title = "Gp2 (goblet)",fill = "log10(count)")
plot_grid(pp1,pp2,pp3,pp4,pp5,pp6,pp7,nrow = 3,ncol = 3)

Version Author Date
fb5cb48 Peter Carbonetto 2020-10-20
9171089 Peter Carbonetto 2020-10-11

Pulse-seq data

Next, we load the larger “pulse-seq” data set, the k=11 Poisson NMF model fit for these data, and the 7 clusters identified in the clustering analysis.

load("../data/pulseseq.RData")
load("../output/pulseseq/diff-count-pulseseq.RData")
counts_pulseseq  <- counts
samples_pulseseq <- readRDS("../output/pulseseq/clustering-pulseseq.rds")
fit_pulseseq <- readRDS("../output/pulseseq/rds/fit-pulseseq-scd-ex-k=11.rds")$fit
diff_count_pulseseq <- diff_count_topics
diff_count_clusters_pulseseq <- diff_count_clusters
diff_count_hillock_pulseseq <- diff_count_hillock
diff_count_bc_pulseseq <- diff_count_bc
rm(samples,counts)
rm(diff_count_topics,diff_count_clusters,diff_count_hillock,diff_count_bc)

For reference, we show here the Structure plot from the clustering analysis of the pulse-seq data. This Structure plot summarizes the topic proportions in each of the 7 subsets (including the background cluster):

It can also be helpful to view the cluster assignments projected onto the principal components of the topic proportions:

These clusters closely correspond to cell types. To illustrate this point, here we layer the PCA plots with expression of cell-type-specific genes such as Cdhr3 for ciliated cells.

abundant <- c("B","C","Cil","U")
rare     <- c("T+N","I","P")
rows1 <- which(is.element(samples_pulseseq$cluster,abundant))
rows2 <- which(is.element(samples_pulseseq$cluster,rare))
fit1  <- select(poisson2multinom(fit_pulseseq),loadings = rows1)
fit2  <- select(poisson2multinom(fit_pulseseq),loadings = rows2)
pp8  <- pca_plot(fit1,pcs = 1:2,fill = log10(counts_pulseseq[rows1,"Krt5"])) +
        labs(title = "Krt5 (basal)",fill = "log10(count)")
pp9  <- pca_plot(fit1,pcs = 1:2,fill=log10(counts_pulseseq[rows1,"Scgb1a1"])) +
        labs(title = "Scgb1a1 (club)",fill = "log10(count)")
pp10  <- pca_plot(fit1,pcs = 3:4,fill = log10(counts_pulseseq[rows1,"Cdhr3"])) +
        labs(title = "Cdhr3 (ciliated)",fill = "log10(count)")
pp11 <- pca_plot(fit2,pcs = 1:2,fill = log10(counts_pulseseq[rows2,"Chga"])) +
        labs(title = "Chga (neuroendocrine)",fill = "log10(count)")
pp12 <- pca_plot(fit2,pcs = 1:2,fill = log10(counts_pulseseq[rows2,"Gnat3"])) +
        labs(title = "Gnat3 (tuft)",fill = "log10(count)")
pp13 <- pca_plot(fit2,pcs = 1:2,fill = log10(counts_pulseseq[rows2,"Cftr"])) +
        labs(title = "Cftr (ionocyte)",fill = "log10(count)")
pp14 <- pca_plot(fit2,pcs = 1:2,fill = log10(counts_pulseseq[rows2,"Cdk1"])) +
        labs(title = "Cdk1 (proliferating)",fill = "log10(count)")
plot_grid(pp8,pp9,pp10,pp11,pp12,pp13,pp14,nrow = 3,ncol = 3)

Version Author Date
fb5cb48 Peter Carbonetto 2020-10-20
9171089 Peter Carbonetto 2020-10-11

Ciliated cells

We begin with the cluster that captures ciliated cells. This cluster is one of the most distinctive in both the droplet and pulse-seq data sets. Ciliated cells are abundant, though not as much as basal and club cells.

ciliated_genes <- c("Ccdc113","Ccdc153","Cdhr3","Foxj1","Lztfl1","Mlf1")
p1 <- volcano_plot_with_highlighted_genes(diff_count_clusters_droplet,"Cil",
                                          ciliated_genes,
                                          label_above_quantile = 0.998)
print(p1)

Version Author Date
fb5cb48 Peter Carbonetto 2020-10-20
9171089 Peter Carbonetto 2020-10-11
5ea9a86 Peter Carbonetto 2020-10-11
09dc8fc Peter Carbonetto 2020-10-07
58bc6b6 Peter Carbonetto 2020-10-06
8a2c99b Peter Carbonetto 2020-10-01
f45cac1 Peter Carbonetto 2020-10-01
0f9607c Peter Carbonetto 2020-09-30
bc7ea0e Peter Carbonetto 2020-09-29
98bfcf7 Peter Carbonetto 2020-09-29
0ccfc0d Peter Carbonetto 2020-09-29
9a11392 Peter Carbonetto 2020-09-29
b3f5a08 Peter Carbonetto 2020-09-29
09d30d6 Peter Carbonetto 2020-09-29
6272c69 Peter Carbonetto 2020-09-26
6a9691b Peter Carbonetto 2020-09-24
30194ad Peter Carbonetto 2020-09-24
c0fa2db Peter Carbonetto 2020-09-24
78d64e9 Peter Carbonetto 2020-09-23
361eded Peter Carbonetto 2020-09-23
23f87bb Peter Carbonetto 2020-09-23
0ed5061 Peter Carbonetto 2020-09-22

Marker genes and transcription factors identified in Montoro et al (2018) are highlighted in black, and other top differentially expressed genes are shown with gray labels.

We obtain similar top differentially expressed genes in the pulse-seq data:

p2 <- volcano_plot_with_highlighted_genes(diff_count_clusters_pulseseq,"Cil",
                                          ciliated_genes,
                                          label_above_quantile = 0.998)
print(p2)

Version Author Date
fb5cb48 Peter Carbonetto 2020-10-20
9171089 Peter Carbonetto 2020-10-11
09dc8fc Peter Carbonetto 2020-10-07
58bc6b6 Peter Carbonetto 2020-10-06
f45cac1 Peter Carbonetto 2020-10-01
0f9607c Peter Carbonetto 2020-09-30
bc7ea0e Peter Carbonetto 2020-09-29
98bfcf7 Peter Carbonetto 2020-09-29
0ccfc0d Peter Carbonetto 2020-09-29
9a11392 Peter Carbonetto 2020-09-29
161cb38 Peter Carbonetto 2020-09-29
b3f5a08 Peter Carbonetto 2020-09-29
09d30d6 Peter Carbonetto 2020-09-29
6272c69 Peter Carbonetto 2020-09-26
6a9691b Peter Carbonetto 2020-09-24
c0fa2db Peter Carbonetto 2020-09-24
78d64e9 Peter Carbonetto 2020-09-23
361eded Peter Carbonetto 2020-09-23
23f87bb Peter Carbonetto 2020-09-23
0ed5061 Peter Carbonetto 2020-09-22

The topic for the ciliated cell-type (k=7) corresponds very closely to the “Cil” cluster in the pulse-seq data. In addition, gene enrichments are considerably stronger in the topic for ciliated genes, particularly so for some genes with lower expression levels.

p3 <- zscores_scatterplot(diff_count_clusters_pulseseq,
                          diff_count_pulseseq,"Cil","k7",ciliated_genes,
                          xlab = "cluster Cil",ylab = "topic 7")
p4 <- beta_scatterplot(diff_count_clusters_pulseseq,diff_count_pulseseq,
                       "Cil","k7",ciliated_genes,
                       xlab = "cluster Cil",ylab = "topic 7")
plot_grid(p3,p4)

Version Author Date
fb5cb48 Peter Carbonetto 2020-10-20
9171089 Peter Carbonetto 2020-10-11
5ea9a86 Peter Carbonetto 2020-10-11
09dc8fc Peter Carbonetto 2020-10-07
58bc6b6 Peter Carbonetto 2020-10-06
8a2c99b Peter Carbonetto 2020-10-01
f45cac1 Peter Carbonetto 2020-10-01
0f9607c Peter Carbonetto 2020-09-30
bc7ea0e Peter Carbonetto 2020-09-29
98bfcf7 Peter Carbonetto 2020-09-29
0ccfc0d Peter Carbonetto 2020-09-29
9a11392 Peter Carbonetto 2020-09-29
161cb38 Peter Carbonetto 2020-09-29
b3f5a08 Peter Carbonetto 2020-09-29
09d30d6 Peter Carbonetto 2020-09-29

Ionocytes

In the pulse-seq data, we identify a distinctive cluster for the newly discovered, rare “ionocyte” cell type. Gene expression in these cells is not fully captured by any single topic, yet the mixture of topics forms a distinctive cluster.

ionocyte_genes <- c("Ascl3","Asgr1","Atp6v0d2","Atp6v1c2","Cftr","Foxi1",
                    "Moxd1","P2ry14","Stap1")
p5 <- volcano_plot_with_highlighted_genes(diff_count_clusters_pulseseq,"I",
                                          ionocyte_genes,
                                          label_above_quantile = 0.998)
print(p5)

Version Author Date
fb5cb48 Peter Carbonetto 2020-10-20
9171089 Peter Carbonetto 2020-10-11
09dc8fc Peter Carbonetto 2020-10-07
58bc6b6 Peter Carbonetto 2020-10-06
8a2c99b Peter Carbonetto 2020-10-01
f45cac1 Peter Carbonetto 2020-10-01
0f9607c Peter Carbonetto 2020-09-30
bc7ea0e Peter Carbonetto 2020-09-29
98bfcf7 Peter Carbonetto 2020-09-29
0ccfc0d Peter Carbonetto 2020-09-29
9a11392 Peter Carbonetto 2020-09-29
161cb38 Peter Carbonetto 2020-09-29
b3f5a08 Peter Carbonetto 2020-09-29
09d30d6 Peter Carbonetto 2020-09-29
6272c69 Peter Carbonetto 2020-09-26
6a9691b Peter Carbonetto 2020-09-24
30194ad Peter Carbonetto 2020-09-24
c0fa2db Peter Carbonetto 2020-09-24
78d64e9 Peter Carbonetto 2020-09-23
23f87bb Peter Carbonetto 2020-09-23
0ed5061 Peter Carbonetto 2020-09-22

We do not identify a topic or cluster for ionocytes in the droplet data. Judging by expression of the Foxi1 ionocyte marker gene, only a handful of cells in the droplet data are ionocytes:

p6 <- pca_plot(poisson2multinom(fit_droplet),fill = counts_droplet[,"Foxi1"]) +
      labs(fill = "count")
print(p6)

Version Author Date
58bc6b6 Peter Carbonetto 2020-10-06
6a9691b Peter Carbonetto 2020-09-24
30194ad Peter Carbonetto 2020-09-24
c0fa2db Peter Carbonetto 2020-09-24
78d64e9 Peter Carbonetto 2020-09-23
23f87bb Peter Carbonetto 2020-09-23
0ed5061 Peter Carbonetto 2020-09-22

Goblet cells

Consistent with Montoro et al (2018), we identify a cluster of Goblet cells in the droplet data.

goblet_genes <- "Gp2"
p7 <- volcano_plot_with_highlighted_genes(diff_count_clusters_droplet,"G",
                                          goblet_genes,
                                          label_above_quantile = 0.998)
print(p7)

Version Author Date
fb5cb48 Peter Carbonetto 2020-10-20
9171089 Peter Carbonetto 2020-10-11
5ea9a86 Peter Carbonetto 2020-10-11
09dc8fc Peter Carbonetto 2020-10-07
58bc6b6 Peter Carbonetto 2020-10-06
8a2c99b Peter Carbonetto 2020-10-01
f45cac1 Peter Carbonetto 2020-10-01
0f9607c Peter Carbonetto 2020-09-30
bc7ea0e Peter Carbonetto 2020-09-29
98bfcf7 Peter Carbonetto 2020-09-29
0ccfc0d Peter Carbonetto 2020-09-29
9a11392 Peter Carbonetto 2020-09-29
161cb38 Peter Carbonetto 2020-09-29
b3f5a08 Peter Carbonetto 2020-09-29
09d30d6 Peter Carbonetto 2020-09-29
6272c69 Peter Carbonetto 2020-09-26
6a9691b Peter Carbonetto 2020-09-24
30194ad Peter Carbonetto 2020-09-24
23f87bb Peter Carbonetto 2020-09-23
0ed5061 Peter Carbonetto 2020-09-22

Topic k=1 is unique to this cluster, suggesting that the this topic characterizes the goblet cell type. Indeed, there is a very close correspondence between the topic and cluster, with several characteristic genes (e.g. Gp2) showing somewhat stronger enrichment in the topic.

p8 <- zscores_scatterplot(diff_count_clusters_droplet,
                          diff_count_droplet,"G","k1",goblet_genes,
                          label_above_score = 200,
                          xlab = "cluster G",ylab = "topic 1")
p9 <- beta_scatterplot(diff_count_clusters_droplet,diff_count_droplet,
                       "G","k1",goblet_genes,xlab = "cluster G",
                       ylab = "topic 1")
plot_grid(p8,p9)

Version Author Date
fb5cb48 Peter Carbonetto 2020-10-20
9171089 Peter Carbonetto 2020-10-11
5ea9a86 Peter Carbonetto 2020-10-11
09dc8fc Peter Carbonetto 2020-10-07
58bc6b6 Peter Carbonetto 2020-10-06
8a2c99b Peter Carbonetto 2020-10-01
f45cac1 Peter Carbonetto 2020-10-01
0f9607c Peter Carbonetto 2020-09-30
bc7ea0e Peter Carbonetto 2020-09-29
98bfcf7 Peter Carbonetto 2020-09-29
0ccfc0d Peter Carbonetto 2020-09-29
9a11392 Peter Carbonetto 2020-09-29
161cb38 Peter Carbonetto 2020-09-29
b3f5a08 Peter Carbonetto 2020-09-29
09d30d6 Peter Carbonetto 2020-09-29

Tuft and pulmonary neuroendocrine (PNEC) cells

In both data sets, we identify clusters for tuft and pulmonary neuroendocrine cells. The fitted topic models do not separate these two rare cell types; we identify these cell types as a single cluster.

tuft_genes <- c("Ascl2","Dclk1","Gnat3","Rgs13")
neuroendocrine_genes <- c("Ascl1","Chga")
p10 <- volcano_plot_with_highlighted_genes(diff_count_clusters_droplet,"T+N",
                                           c(tuft_genes,neuroendocrine_genes),
                                           label_above_quantile = 0.998)
print(p10)

Here is the volcano plot from the pulse-seq data:

p11 <- volcano_plot_with_highlighted_genes(diff_count_clusters_pulseseq,"T+N",
                                           c(tuft_genes,neuroendocrine_genes),
                                           label_above_quantile = 0.998)
print(p11)

Version Author Date
fb5cb48 Peter Carbonetto 2020-10-20
9171089 Peter Carbonetto 2020-10-11
5ea9a86 Peter Carbonetto 2020-10-11
09dc8fc Peter Carbonetto 2020-10-07
58bc6b6 Peter Carbonetto 2020-10-06
8a2c99b Peter Carbonetto 2020-10-01
f45cac1 Peter Carbonetto 2020-10-01
bc7ea0e Peter Carbonetto 2020-09-29
98bfcf7 Peter Carbonetto 2020-09-29
0ccfc0d Peter Carbonetto 2020-09-29
161cb38 Peter Carbonetto 2020-09-29
b3f5a08 Peter Carbonetto 2020-09-29
09d30d6 Peter Carbonetto 2020-09-29
6272c69 Peter Carbonetto 2020-09-26
6a9691b Peter Carbonetto 2020-09-24

Although we do not identify clusters for tuft and neuroendocrine cells, in the droplet data topics 2 and 5 captures variation in gene expression that corresponds to these cell-types. In particular, topic k=2 in the “T+N” cluster is enriched for neuroendocrine-specific genes (e.g., Chga) and topic k=6 is enriched for tuft-specific genes (e.g., Gnat3).

rows <- which(samples_droplet$cluster == "T+N")
diff_count_TN_droplet <-
  diff_count_analysis(select(poisson2multinom(fit_droplet),loadings = rows),
                      counts_droplet[rows,])
p12 <- volcano_plot_with_highlighted_genes(diff_count_TN_droplet,"k2",
                                           c(tuft_genes,neuroendocrine_genes),
                                           label_above_quantile = 0.998) +
       ggtitle("topic 2")
p13 <- volcano_plot_with_highlighted_genes(diff_count_TN_droplet,"k6",
                                           c(tuft_genes,neuroendocrine_genes),
                                           label_above_quantile = 0.998) +
       ggtitle("topic 6")
plot_grid(p12,p13)

# Fitting 18388 x 7 = 128716 univariate Poisson models.
# Computing log-fold change statistics.

Similarly, in the pulse-seq data, in topic k=2 we observed increased expression of neuroendocrine-specific genes and underexpression of tuft-specific genes.

rows <- which(samples_pulseseq$cluster == "T+N")
diff_count_TN_pulseseq <-
  diff_count_analysis(select(poisson2multinom(fit_pulseseq),loadings = rows),
                      counts_pulseseq[rows,])
p14 <- volcano_plot_with_highlighted_genes(diff_count_TN_pulseseq,"k2",
                                           c(tuft_genes,neuroendocrine_genes),
                                           label_above_quantile = 0.998) +
       ggtitle("topic 2")
print(p14)

# Fitting 21621 x 11 = 237831 univariate Poisson models.
# Computing log-fold change statistics.

The fact that the topic proportions in tuft and neuroendocrine cells does not vary a lot suggests relatively small differences in gene expression between these cell-types.

Basal cells

We now move on to the large majority of cells in each of the epithelial airway data sets (over 90% in droplet and over 92% in pulseseq) that do not break down into distinct clusters.

Although we do not obtain a distinct basal cells cluster, attempting to form a cluster does indeed reasonably distinguish basal cells:

basal_genes <- c("Aqp3","Krt5","Dapl1","Hspa1a","Trp63")
p15 <- volcano_plot_with_highlighted_genes(diff_count_clusters_droplet,"B",
                                           c(basal_genes,tuft_genes,
                                             neuroendocrine_genes),
                                           label_above_quantile = 0.995)
print(p15)

Version Author Date
fb5cb48 Peter Carbonetto 2020-10-20
9171089 Peter Carbonetto 2020-10-11
5ea9a86 Peter Carbonetto 2020-10-11
09dc8fc Peter Carbonetto 2020-10-07
58bc6b6 Peter Carbonetto 2020-10-06
8a2c99b Peter Carbonetto 2020-10-01
f45cac1 Peter Carbonetto 2020-10-01
bc7ea0e Peter Carbonetto 2020-09-29
98bfcf7 Peter Carbonetto 2020-09-29
0ccfc0d Peter Carbonetto 2020-09-29
9a11392 Peter Carbonetto 2020-09-29
161cb38 Peter Carbonetto 2020-09-29

Comparing the basal cells topic (k=2) against the basal cells cluster in the droplet data, there is a close correspondence between the two, with the topic showing much stronger enrichment of characteristic basal genes:

p16 <- zscores_scatterplot(diff_count_clusters_droplet,
                           diff_count_basal_droplet,"B","k2",
                           basal_genes,zmax = 400,
                           xlab = "cluster B",ylab = "topic 2")
p17 <- beta_scatterplot(diff_count_clusters_droplet,diff_count_basal_droplet,
                        "B","k2",basal_genes,zmin = 2,
                        xlab = "cluster B",y = "topic 2")
plot_grid(p16,p17)

Version Author Date
fb5cb48 Peter Carbonetto 2020-10-20
9171089 Peter Carbonetto 2020-10-11
5ea9a86 Peter Carbonetto 2020-10-11
09dc8fc Peter Carbonetto 2020-10-07
58bc6b6 Peter Carbonetto 2020-10-06
8a2c99b Peter Carbonetto 2020-10-01
f45cac1 Peter Carbonetto 2020-10-01
0f9607c Peter Carbonetto 2020-09-30
bc7ea0e Peter Carbonetto 2020-09-29
98bfcf7 Peter Carbonetto 2020-09-29
0ccfc0d Peter Carbonetto 2020-09-29
9a11392 Peter Carbonetto 2020-09-29
161cb38 Peter Carbonetto 2020-09-29

We obtain similar results with a cluster identified in the pulse-seq data,

p18 <- volcano_plot_with_highlighted_genes(diff_count_clusters_pulseseq,"B",
                                           basal_genes,
                                           label_above_quantile = 0.995)
print(p18)

Version Author Date
fb5cb48 Peter Carbonetto 2020-10-20
9171089 Peter Carbonetto 2020-10-11
5ea9a86 Peter Carbonetto 2020-10-11
09dc8fc Peter Carbonetto 2020-10-07
58bc6b6 Peter Carbonetto 2020-10-06
8a2c99b Peter Carbonetto 2020-10-01
0f9607c Peter Carbonetto 2020-09-30
bc7ea0e Peter Carbonetto 2020-09-29
98bfcf7 Peter Carbonetto 2020-09-29
0ccfc0d Peter Carbonetto 2020-09-29
9a11392 Peter Carbonetto 2020-09-29
161cb38 Peter Carbonetto 2020-09-29

and we achieve much stronger enrichment of basal genes in the combined basal topics (k=1,3,9) when compared to the basal cluster in the pulse-seq data:

p19 <- zscores_scatterplot(diff_count_clusters_pulseseq,
                           diff_count_bc_pulseseq,"B","k1+k3+k9",
                           basal_genes,zmax = 2000,
                           xlab = "cluster B",ylab = "topic 2")
p20 <- beta_scatterplot(diff_count_clusters_pulseseq,
                        diff_count_bc_pulseseq,
                        "B","k1+k3+k9",basal_genes,
                        xlab = "cluster B",ylab = "topics 1, 3, 9")
plot_grid(p19,p20)

Version Author Date
fb5cb48 Peter Carbonetto 2020-10-20
9171089 Peter Carbonetto 2020-10-11
5ea9a86 Peter Carbonetto 2020-10-11
09dc8fc Peter Carbonetto 2020-10-07
58bc6b6 Peter Carbonetto 2020-10-06
8a2c99b Peter Carbonetto 2020-10-01
f45cac1 Peter Carbonetto 2020-10-01
0f9607c Peter Carbonetto 2020-09-30
bc7ea0e Peter Carbonetto 2020-09-29
98bfcf7 Peter Carbonetto 2020-09-29
0ccfc0d Peter Carbonetto 2020-09-29
9a11392 Peter Carbonetto 2020-09-29
161cb38 Peter Carbonetto 2020-09-29

Proliferating cells

There is an interesting subset of basal cells, uniquely in the pulse-seq set set, that isn’t captured well by any single topic, but it stands out in PCA plots of the topic proportions. Forming a cluster from this subset, we obtain strong enrichment of cell-cycle genes:

cell_cycle_genes <- c("Cdk1","Ube2c","Top2a")
p21 <- volcano_plot_with_highlighted_genes(diff_count_clusters_pulseseq,"P",
                                           cell_cycle_genes,
                                           label_above_quantile = 0.998)
print(p21)

Version Author Date
fb5cb48 Peter Carbonetto 2020-10-20
9171089 Peter Carbonetto 2020-10-11
5ea9a86 Peter Carbonetto 2020-10-11
09dc8fc Peter Carbonetto 2020-10-07
58bc6b6 Peter Carbonetto 2020-10-06
8a2c99b Peter Carbonetto 2020-10-01
f45cac1 Peter Carbonetto 2020-10-01
0f9607c Peter Carbonetto 2020-09-30
bc7ea0e Peter Carbonetto 2020-09-29
98bfcf7 Peter Carbonetto 2020-09-29
0ccfc0d Peter Carbonetto 2020-09-29
9a11392 Peter Carbonetto 2020-09-29

Indeed, if we formulate a simple a “cell-cycle score”, we see that the signal is quite visible in PCs 5 and 6 of the topic proportions:

rows <- with(samples_pulseseq,which(cluster == "B" | cluster == "P"))
fit2 <- select(poisson2multinom(fit_pulseseq),loadings = rows)
p22  <- cellcycle_pca_plot(fit2,counts_pulseseq[rows,],pcs = 5:6)
print(p22)

Version Author Date
fb5cb48 Peter Carbonetto 2020-10-20
09dc8fc Peter Carbonetto 2020-10-07
58bc6b6 Peter Carbonetto 2020-10-06
bc7ea0e Peter Carbonetto 2020-09-29
9a11392 Peter Carbonetto 2020-09-29

Hillock cells

The Montoro et al (2018) paper identifies a rare transitional cell though a diffusion maps analysis of the droplet data. They call these rare transition cells uniquely expressing Krt13 as “Hillock cells”. Indeed, we do not identify a distinct cluster for Hillock celels in the droplet data, but we nonetheless formed a small (n=197) cluster in the clustering analysis that shows strong enrichment of the top hillock genes (e.g., Krt4, Krt13):

hillock_genes <- c("Anxa1","Cldn3","Ecm1","Krt13","Krt4","Lgals3","S100a11")
p23 <- volcano_plot_with_highlighted_genes(diff_count_clusters_droplet,"H",
                                           hillock_genes,
                                           label_above_quantile = 0.998)
print(p23)

Version Author Date
fb5cb48 Peter Carbonetto 2020-10-20
9171089 Peter Carbonetto 2020-10-11
5ea9a86 Peter Carbonetto 2020-10-11
09dc8fc Peter Carbonetto 2020-10-07
58bc6b6 Peter Carbonetto 2020-10-06
8a2c99b Peter Carbonetto 2020-10-01
f45cac1 Peter Carbonetto 2020-10-01
bc7ea0e Peter Carbonetto 2020-09-29
98bfcf7 Peter Carbonetto 2020-09-29
0ccfc0d Peter Carbonetto 2020-09-29
9a11392 Peter Carbonetto 2020-09-29

Given the transitional nature of these cells, one would expect that mixtures of gene programs would better characterize the continuous variation in the hillock-specific gene program, and indeed topic 4, which is the greatest contributor to this cluster of hillock cells, picks up a more distinct enrichment signal for hillock genes:

p24 <- zscores_scatterplot(diff_count_clusters_droplet,
                           diff_count_droplet,"H","k4",
                           hillock_genes,zmax = 400,
                           xlab = "cluster H",ylab = "topic 4")
p25 <- beta_scatterplot(diff_count_clusters_droplet,diff_count_droplet,
                        "H","k4",hillock_genes,
                        xlab = "cluster H",ylab = "topic 4")
plot_grid(p24,p25)

Version Author Date
fb5cb48 Peter Carbonetto 2020-10-20
9171089 Peter Carbonetto 2020-10-11
5ea9a86 Peter Carbonetto 2020-10-11
09dc8fc Peter Carbonetto 2020-10-07
58bc6b6 Peter Carbonetto 2020-10-06
8a2c99b Peter Carbonetto 2020-10-01
f45cac1 Peter Carbonetto 2020-10-01
0f9607c Peter Carbonetto 2020-09-30
bc7ea0e Peter Carbonetto 2020-09-29
98bfcf7 Peter Carbonetto 2020-09-29
0ccfc0d Peter Carbonetto 2020-09-29
9a11392 Peter Carbonetto 2020-09-29

For example, we estimate roughly a 68-fold enrichment of Krt13 expression in the hillock cluster, and over 1,000-fold enrichment in the hillock topic (essentially because there is no expression of Krt13 outside this topic).

The presence of hillock cells in the pulse-seq data is more subtle, but it is nonetheless well-captured by a single topic, k=1:

p26 <- volcano_plot_with_highlighted_genes(diff_count_hillock_pulseseq,"k1",
                                           hillock_genes,
                                           label_above_quantile = 0.995)
print(p26)

Version Author Date
fb5cb48 Peter Carbonetto 2020-10-20
9171089 Peter Carbonetto 2020-10-11
5ea9a86 Peter Carbonetto 2020-10-11
09dc8fc Peter Carbonetto 2020-10-07
58bc6b6 Peter Carbonetto 2020-10-06
8a2c99b Peter Carbonetto 2020-10-01
f45cac1 Peter Carbonetto 2020-10-01
0f9607c Peter Carbonetto 2020-09-30
bc7ea0e Peter Carbonetto 2020-09-29
98bfcf7 Peter Carbonetto 2020-09-29
0ccfc0d Peter Carbonetto 2020-09-29

Club cells

The remaining cluster in the droplet captures club cells:

club_genes <- c("Bpifa1","Cbr2","Cyp2a5","Cyp2f2","Krt15",
                "Lypd2","Muc5b","Nfia","Scgb1a1","Scgb3a2")
p27 <- volcano_plot_with_highlighted_genes(diff_count_clusters_droplet,"C",
                                           club_genes,
                                           label_above_quantile = 0.995)
print(p27)

Version Author Date
fb5cb48 Peter Carbonetto 2020-10-20
9171089 Peter Carbonetto 2020-10-11
5ea9a86 Peter Carbonetto 2020-10-11
09dc8fc Peter Carbonetto 2020-10-07
58bc6b6 Peter Carbonetto 2020-10-06
8a2c99b Peter Carbonetto 2020-10-01
f45cac1 Peter Carbonetto 2020-10-01
0f9607c Peter Carbonetto 2020-09-30
bc7ea0e Peter Carbonetto 2020-09-29
98bfcf7 Peter Carbonetto 2020-09-29

And likewise in the pulse-seq data:

p28 <- volcano_plot_with_highlighted_genes(diff_count_clusters_pulseseq,"C",
                                           club_genes,
                                           label_above_quantile = 0.995)
print(p28)

Version Author Date
fb5cb48 Peter Carbonetto 2020-10-20
9171089 Peter Carbonetto 2020-10-11
5ea9a86 Peter Carbonetto 2020-10-11
09dc8fc Peter Carbonetto 2020-10-07
58bc6b6 Peter Carbonetto 2020-10-06
8a2c99b Peter Carbonetto 2020-10-01
f45cac1 Peter Carbonetto 2020-10-01
0f9607c Peter Carbonetto 2020-09-30
bc7ea0e Peter Carbonetto 2020-09-29
98bfcf7 Peter Carbonetto 2020-09-29

Both the droplet and pulse-seq clusters exhibit a high level of heterogeneity in the topic proportions; in particular, 2 topics are unique to club cluster in the droplet data, and 5 topics in the pulse-seq club cluster. This heterogeneity will require further exploration; for now we focus on the combined topic proportions capturing the club cell-type-specific gene program. In the droplet data, compare cluster C to the combined topic k=5+7,

p29 <- zscores_scatterplot(diff_count_clusters_droplet,
                           diff_count_club_droplet,"C","k5+k7",club_genes,
                           zmax = 500,xlab = "cluster C",ylab = "topics 5 + 7")
p30 <- beta_scatterplot(diff_count_clusters_droplet,diff_count_club_droplet,
                        "C","k5+k7",club_genes,
                        xlab = "cluster C",ylab = "topics 5 + 7")
plot_grid(p29,p30)

Version Author Date
fb5cb48 Peter Carbonetto 2020-10-20
9171089 Peter Carbonetto 2020-10-11
5ea9a86 Peter Carbonetto 2020-10-11
09dc8fc Peter Carbonetto 2020-10-07
58bc6b6 Peter Carbonetto 2020-10-06
8a2c99b Peter Carbonetto 2020-10-01
f45cac1 Peter Carbonetto 2020-10-01
0f9607c Peter Carbonetto 2020-09-30
bc7ea0e Peter Carbonetto 2020-09-29
98bfcf7 Peter Carbonetto 2020-09-29

and in the pulse-seq data compare cluster C to the combined topic k=4+5+6+8+10,

p31 <- zscores_scatterplot(diff_count_clusters_pulseseq,
                           diff_count_bc_pulseseq,"C","k4+k5+k6+k8+k10",
                           club_genes,zmax = 1000,
                           xlab = "cluster C",
                           ylab = "topics 4-6, 8, 10")
p32 <- beta_scatterplot(diff_count_clusters_pulseseq,diff_count_bc_pulseseq,
                        "C","k4+k5+k6+k8+k10",club_genes,
                        xlab = "cluster C",ylab = "topics 4-6, 8, 10")
plot_grid(p31,p32)

Version Author Date
fb5cb48 Peter Carbonetto 2020-10-20
9171089 Peter Carbonetto 2020-10-11
5ea9a86 Peter Carbonetto 2020-10-11
09dc8fc Peter Carbonetto 2020-10-07
58bc6b6 Peter Carbonetto 2020-10-06
8a2c99b Peter Carbonetto 2020-10-01
f45cac1 Peter Carbonetto 2020-10-01
0f9607c Peter Carbonetto 2020-09-30
bc7ea0e Peter Carbonetto 2020-09-29
98bfcf7 Peter Carbonetto 2020-09-29

In both data sets, we observe a much stronger enrichment of characteristic club genes in the combined topics.


sessionInfo()
# R version 3.6.2 (2019-12-12)
# Platform: x86_64-apple-darwin15.6.0 (64-bit)
# Running under: macOS Catalina 10.15.6
# 
# Matrix products: default
# BLAS:   /Library/Frameworks/R.framework/Versions/3.6/Resources/lib/libRblas.0.dylib
# LAPACK: /Library/Frameworks/R.framework/Versions/3.6/Resources/lib/libRlapack.dylib
# 
# locale:
# [1] en_US.UTF-8/en_US.UTF-8/en_US.UTF-8/C/en_US.UTF-8/en_US.UTF-8
# 
# attached base packages:
# [1] stats     graphics  grDevices utils     datasets  methods   base     
# 
# other attached packages:
# [1] cowplot_1.0.0      ggrepel_0.9.0      ggplot2_3.3.0      fastTopics_0.3-184
# [5] dplyr_0.8.3        Matrix_1.2-18     
# 
# loaded via a namespace (and not attached):
#  [1] Rcpp_1.0.5           lattice_0.20-38      tidyr_1.0.0         
#  [4] prettyunits_1.1.1    assertthat_0.2.1     zeallot_0.1.0       
#  [7] rprojroot_1.3-2      digest_0.6.23        R6_2.4.1            
# [10] backports_1.1.5      MatrixModels_0.4-1   evaluate_0.14       
# [13] coda_0.19-3          httr_1.4.2           pillar_1.4.3        
# [16] rlang_0.4.5          progress_1.2.2       lazyeval_0.2.2      
# [19] data.table_1.12.8    irlba_2.3.3          SparseM_1.78        
# [22] whisker_0.4          rmarkdown_2.3        labeling_0.3        
# [25] Rtsne_0.15           stringr_1.4.0        htmlwidgets_1.5.1   
# [28] munsell_0.5.0        compiler_3.6.2       httpuv_1.5.2        
# [31] xfun_0.11            pkgconfig_2.0.3      mcmc_0.9-6          
# [34] htmltools_0.4.0      tidyselect_0.2.5     tibble_2.1.3        
# [37] workflowr_1.6.2.9000 quadprog_1.5-8       viridisLite_0.3.0   
# [40] crayon_1.3.4         withr_2.1.2          later_1.0.0         
# [43] MASS_7.3-51.4        grid_3.6.2           jsonlite_1.6        
# [46] gtable_0.3.0         lifecycle_0.1.0      git2r_0.26.1        
# [49] magrittr_1.5         scales_1.1.0         RcppParallel_4.4.2  
# [52] stringi_1.4.3        farver_2.0.1         fs_1.3.1            
# [55] promises_1.1.0       vctrs_0.2.1          tools_3.6.2         
# [58] glue_1.3.1           purrr_0.3.3          hms_0.5.2           
# [61] yaml_2.2.0           colorspace_1.4-1     plotly_4.9.2        
# [64] knitr_1.26           quantreg_5.54        MCMCpack_1.4-5