Last updated: 2021-05-10
Checks: 7 0
Knit directory: BloomSail/
This reproducible R Markdown analysis was created with workflowr (version 1.6.2). The Checks tab describes the reproducibility checks that were applied when the results were created. The Past versions tab lists the development history.
Great! Since the R Markdown file has been committed to the Git repository, you know the exact version of the code that produced these results.
Great job! The global environment was empty. Objects defined in the global environment can affect the analysis in your R Markdown file in unknown ways. For reproduciblity it’s best to always run the code in an empty environment.
The command set.seed(20191021)
was run prior to running the code in the R Markdown file. Setting a seed ensures that any results that rely on randomness, e.g. subsampling or permutations, are reproducible.
Great job! Recording the operating system, R version, and package versions is critical for reproducibility.
Nice! There were no cached chunks for this analysis, so you can be confident that you successfully produced the results during this run.
Great job! Using relative paths to the files within your workflowr project makes it easier to run your code on other machines.
Great! You are using Git for version control. Tracking code development and connecting the code version to the results is critical for reproducibility.
The results in this page were generated with repository version c438b10. See the Past versions tab to see a history of the changes made to the R Markdown and HTML files.
Note that you need to be careful to ensure that all relevant files for the analysis have been committed to Git prior to generating the results (you can use wflow_publish
or wflow_git_commit
). workflowr only checks the R Markdown file, but you know if there are other scripts or data files that it depends on. Below is the status of the Git repository when the results were generated:
Ignored files:
Ignored: .Rhistory
Ignored: .Rproj.user/
Ignored: data/
Ignored: output/Plots/Figures_publication/.tmp.drivedownload/
Untracked files:
Untracked: data_os-2020-120_submission.zip
Unstaged changes:
Modified: analysis/Phytoplankton.Rmd
Modified: output/Plots/Figures_publication/Appendix/Fig_B1.pdf
Modified: output/Plots/Figures_publication/Appendix/Fig_C1.pdf
Modified: output/Plots/Figures_publication/Appendix/Fig_C2.pdf
Modified: output/Plots/Figures_publication/Appendix/Fig_C3.pdf
Modified: output/Plots/Figures_publication/Article/Fig_1.pdf
Modified: output/Plots/Figures_publication/Article/Fig_2.pdf
Modified: output/Plots/Figures_publication/Article/Fig_3.pdf
Modified: output/Plots/Figures_publication/Article/Fig_3.png
Modified: output/Plots/Figures_publication/Article/Fig_4.pdf
Modified: output/Plots/Figures_publication/Article/Fig_5.pdf
Note that any generated files, e.g. HTML, png, CSS, etc., are not included in this status report because it is ok for generated content to have uncommitted changes.
These are the previous versions of the repository in which changes were made to the R Markdown (analysis/response_time.Rmd
) and HTML (docs/response_time.html
) files. If you’ve configured a remote Git repository (see ?wflow_git_remote
), click on the hyperlinks in the table below to view the files as they were in that past version.
File | Version | Author | Date | Message |
---|---|---|---|---|
Rmd | c438b10 | jens-daniel-mueller | 2021-05-10 | removed grid lines |
html | 1b2ea26 | jens-daniel-mueller | 2021-05-10 | Build site. |
Rmd | 79ad3f8 | jens-daniel-mueller | 2021-05-10 | removed grid lines |
Rmd | 4f593fe | jens-daniel-mueller | 2021-05-10 | removed grid lines |
html | 61e452c | jens-daniel-mueller | 2021-04-16 | Build site. |
Rmd | bbfb053 | jens-daniel-mueller | 2021-04-16 | rerun with Fiedler 2013 RT correction |
html | 010e916 | jens-daniel-mueller | 2021-02-20 | Build site. |
Rmd | 760a06a | jens-daniel-mueller | 2021-02-20 | cleaning |
html | 5f4fb9a | jens-daniel-mueller | 2021-02-20 | Build site. |
Rmd | 031f46a | jens-daniel-mueller | 2021-02-20 | rerun with early exclusion of negative pCO2 |
html | 516b294 | jens-daniel-mueller | 2021-02-18 | Build site. |
html | 70a8950 | jens-daniel-mueller | 2021-02-11 | Build site. |
html | 7d39e0b | jens-daniel-mueller | 2021-02-11 | Build site. |
Rmd | e9b363c | jens-daniel-mueller | 2021-02-11 | cleaning |
html | acba234 | jens-daniel-mueller | 2021-02-11 | Build site. |
Rmd | 6d46720 | jens-daniel-mueller | 2021-02-11 | cleaning |
html | 8051798 | jens-daniel-mueller | 2021-02-10 | Build site. |
html | 37903c9 | jens-daniel-mueller | 2021-02-10 | Build site. |
Rmd | 0669cbe | jens-daniel-mueller | 2021-02-10 | italic p in pCO2 |
html | 88b4406 | jens-daniel-mueller | 2021-01-30 | Build site. |
Rmd | d1fe3c6 | jens-daniel-mueller | 2021-01-30 | resized figures |
html | 289b763 | jens-daniel-mueller | 2021-01-30 | Build site. |
Rmd | b470c95 | jens-daniel-mueller | 2021-01-30 | resized figures |
html | c5fc34c | jens-daniel-mueller | 2021-01-22 | Build site. |
Rmd | f656a73 | jens-daniel-mueller | 2021-01-22 | all figs revised |
html | a7950fd | jens-daniel-mueller | 2021-01-22 | Build site. |
Rmd | 88fcb00 | jens-daniel-mueller | 2021-01-22 | modified figs |
html | cde4f1d | jens-daniel-mueller | 2021-01-08 | Build site. |
Rmd | 7cd025c | jens-daniel-mueller | 2021-01-08 | modified figs |
html | 4277235 | jens-daniel-mueller | 2021-01-05 | Build site. |
Rmd | 58c1637 | jens-daniel-mueller | 2021-01-05 | new Fig_AX names, A5 added |
html | 7e29c30 | jens-daniel-mueller | 2020-11-02 | Build site. |
Rmd | 7e5a700 | jens-daniel-mueller | 2020-11-02 | renamed and revised figures for publication |
html | 9a3f42a | jens-daniel-mueller | 2020-10-24 | Build site. |
html | 05248bf | jens-daniel-mueller | 2020-10-20 | Build site. |
html | 1c4fe8e | jens-daniel-mueller | 2020-10-20 | table with time series in depth intervals added |
html | 331375c | jens-daniel-mueller | 2020-10-13 | Build site. |
Rmd | b7d8527 | jens-daniel-mueller | 2020-10-13 | Profiling speed calculated |
html | 7e3d264 | jens-daniel-mueller | 2020-10-13 | Build site. |
Rmd | 0c74196 | jens-daniel-mueller | 2020-10-13 | calculated mean pCO2 offset |
html | 1a55550 | jens-daniel-mueller | 2020-10-13 | Build site. |
Rmd | bdf7a94 | jens-daniel-mueller | 2020-10-13 | define RT stats criteria in parameterization |
html | 6896725 | jens-daniel-mueller | 2020-10-01 | Build site. |
html | 9f66019 | jens-daniel-mueller | 2020-10-01 | Build site. |
html | 27c5431 | jens-daniel-mueller | 2020-09-29 | Build site. |
Rmd | 2e0f902 | jens-daniel-mueller | 2020-09-29 | all parameters separate, rebuild |
html | 1d01685 | jens-daniel-mueller | 2020-09-28 | Build site. |
Rmd | d28129f | jens-daniel-mueller | 2020-09-28 | republish after tau factor set to 1 and using final pCO2 data |
html | 1278900 | jens-daniel-mueller | 2020-09-25 | Build site. |
html | 904f0f7 | jens-daniel-mueller | 2020-09-23 | Build site. |
Rmd | 7f497e4 | jens-daniel-mueller | 2020-09-23 | updated tau lm fit procedure |
html | c919fb7 | jens-daniel-mueller | 2020-06-29 | Build site. |
Rmd | 1461cb6 | jens-daniel-mueller | 2020-06-29 | Fig update for talk |
html | 603af23 | jens-daniel-mueller | 2020-05-25 | Build site. |
html | 3414c23 | jens-daniel-mueller | 2020-05-25 | Build site. |
html | dd3bd89 | jens-daniel-mueller | 2020-05-07 | Build site. |
Rmd | ad98da2 | jens-daniel-mueller | 2020-05-07 | harmonized parameter labeling |
html | 113b326 | jens-daniel-mueller | 2020-05-06 | Build site. |
Rmd | 55b65ca | jens-daniel-mueller | 2020-05-06 | changed example profile |
html | 6a78488 | jens-daniel-mueller | 2020-05-06 | Build site. |
Rmd | 5cc31b0 | jens-daniel-mueller | 2020-05-06 | revised selection criteria for summary analytics up vs down |
html | 907b163 | jens-daniel-mueller | 2020-05-06 | Build site. |
Rmd | a12b579 | jens-daniel-mueller | 2020-05-06 | unnecessary code and variables removed |
html | c9ad77d | jens-daniel-mueller | 2020-05-06 | Build site. |
Rmd | 53baed8 | jens-daniel-mueller | 2020-05-06 | tau high res optimum |
html | 324117a | jens-daniel-mueller | 2020-05-05 | Build site. |
Rmd | aa283ad | jens-daniel-mueller | 2020-05-05 | tested 5m grid intervals |
html | 772e588 | jens-daniel-mueller | 2020-05-04 | Build site. |
Rmd | 2ab39d7 | jens-daniel-mueller | 2020-05-04 | All profiles and timeseries in one plot pdf |
html | 3832733 | jens-daniel-mueller | 2020-04-30 | Build site. |
Rmd | 4f4ab08 | jens-daniel-mueller | 2020-04-30 | harmonized code until RT determination |
html | 1b6480f | jens-daniel-mueller | 2020-04-30 | Build site. |
Rmd | fe72316 | jens-daniel-mueller | 2020-04-30 | revised variable and object names, used temp-dependent tau only, rerun code |
html | b5722a7 | jens-daniel-mueller | 2020-04-28 | Build site. |
html | 6fdf22f | jens-daniel-mueller | 2020-04-27 | Build site. |
Rmd | f73f073 | jens-daniel-mueller | 2020-04-27 | removed Date-ID column causing error |
html | 472c2b4 | jens-daniel-mueller | 2020-04-21 | Build site. |
html | f8fcf50 | jens-daniel-mueller | 2020-04-19 | created pub figures for time series |
html | a6c4c22 | jens-daniel-mueller | 2020-03-30 | Build site. |
html | 80c78b3 | jens-daniel-mueller | 2020-03-30 | Build site. |
html | 5f8ca30 | jens-daniel-mueller | 2020-03-20 | Build site. |
html | 2a20453 | jens-daniel-mueller | 2020-03-20 | Build site. |
html | 473ab25 | jens-daniel-mueller | 2020-03-19 | Build site. |
html | 81f022e | jens-daniel-mueller | 2020-03-18 | Build site. |
html | 1e39d85 | jens-daniel-mueller | 2020-03-18 | Build site. |
html | 2105236 | jens-daniel-mueller | 2020-03-18 | Build site. |
html | 05b9bdc | jens-daniel-mueller | 2020-03-17 | Build site. |
html | 0202742 | jens-daniel-mueller | 2020-03-16 | Build site. |
html | 8e83afd | jens-daniel-mueller | 2020-03-12 | Build site. |
html | a3ddea4 | jens-daniel-mueller | 2020-03-12 | Build site. |
html | 52621ea | jens-daniel-mueller | 2020-03-12 | Build site. |
html | e43a6f2 | jens-daniel-mueller | 2019-12-19 | Build site. |
html | 3042ff3 | jens-daniel-mueller | 2019-12-19 | Build site. |
Rmd | 282c3ac | jens-daniel-mueller | 2019-12-19 | whole data set RT corrected |
html | 0bbafef | jens-daniel-mueller | 2019-12-13 | Build site. |
Rmd | b9c2b8f | jens-daniel-mueller | 2019-12-13 | Finalized RT correction |
html | b9c2b8f | jens-daniel-mueller | 2019-12-13 | Finalized RT correction |
html | 9a4e5c3 | jens-daniel-mueller | 2019-12-13 | Build site. |
Rmd | cb16002 | jens-daniel-mueller | 2019-12-13 | SD of RT check up vs downcast |
html | cb16002 | jens-daniel-mueller | 2019-12-13 | SD of RT check up vs downcast |
html | 5e3fcfb | jens-daniel-mueller | 2019-12-12 | Build site. |
Rmd | f1cd72d | jens-daniel-mueller | 2019-12-12 | High res tau and RT evaluation |
html | f1cd72d | jens-daniel-mueller | 2019-12-12 | High res tau and RT evaluation |
html | 8abe41d | jens-daniel-mueller | 2019-12-10 | Build site. |
Rmd | 0fcfdbf | jens-daniel-mueller | 2019-12-10 | excluded partial profiles from summary stats |
html | 70e07ef | jens-daniel-mueller | 2019-12-10 | Build site. |
Rmd | 935bc85 | jens-daniel-mueller | 2019-12-10 | dep interval profiles decreased to 1m |
html | 78710ee | jens-daniel-mueller | 2019-12-09 | Build site. |
Rmd | c6cfca5 | jens-daniel-mueller | 2019-12-09 | RT correction incl OGB data |
html | 4d3910a | jens-daniel-mueller | 2019-12-09 | Build site. |
Rmd | 25aeefd | jens-daniel-mueller | 2019-12-09 | data_base included OGB data |
html | 0e13786 | jens-daniel-mueller | 2019-12-03 | Build site. |
Rmd | 8da790d | jens-daniel-mueller | 2019-12-03 | tau optimum included |
html | 4f1a268 | jens-daniel-mueller | 2019-12-03 | Build site. |
Rmd | 216ad8a | jens-daniel-mueller | 2019-12-03 | response time correction extended |
html | 216ad8a | jens-daniel-mueller | 2019-12-03 | response time correction extended |
html | fd0f33d | jens-daniel-mueller | 2019-11-26 | Build site. |
Rmd | 421c48c | jens-daniel-mueller | 2019-11-26 | found temperature dependence of RT |
html | 421c48c | jens-daniel-mueller | 2019-11-26 | found temperature dependence of RT |
html | bc6f19b | jens-daniel-mueller | 2019-11-22 | Build site. |
Rmd | 03b1b97 | jens-daniel-mueller | 2019-11-22 | updated RT determination |
html | d921065 | jens-daniel-mueller | 2019-11-14 | Build site. |
Rmd | 252f84d | jens-daniel-mueller | 2019-11-14 | included EDA in data base |
html | d61a468 | jens-daniel-mueller | 2019-11-14 | Build site. |
Rmd | 76e38c6 | jens-daniel-mueller | 2019-11-14 | rebuild site, new toc depth |
html | 08b9a38 | jens-daniel-mueller | 2019-11-08 | Build site. |
Rmd | ad4aa12 | jens-daniel-mueller | 2019-11-08 | Finalized RT determination |
html | ad4aa12 | jens-daniel-mueller | 2019-11-08 | Finalized RT determination |
html | b8dac9c | jens-daniel-mueller | 2019-11-08 | Build site. |
Rmd | efcf0d6 | jens-daniel-mueller | 2019-11-08 | Finalized and cleaned RT determination |
html | f3277a5 | jens-daniel-mueller | 2019-11-08 | Build site. |
Rmd | aa27fd4 | jens-daniel-mueller | 2019-11-08 | Finalized RT determination |
html | 4256bcf | jens-daniel-mueller | 2019-11-08 | Build site. |
Rmd | 7f52e66 | jens-daniel-mueller | 2019-11-08 | response_time pdf updated |
html | 72687ee | jens-daniel-mueller | 2019-11-08 | Build site. |
Rmd | 74632d6 | jens-daniel-mueller | 2019-11-08 | response_time pdf updated |
html | 74212a6 | jens-daniel-mueller | 2019-11-08 | Build site. |
Rmd | 6cb1935 | jens-daniel-mueller | 2019-11-08 | response_time updated |
html | 33e3659 | jens-daniel-mueller | 2019-10-22 | Build site. |
Rmd | efcafd1 | jens-daniel-mueller | 2019-10-22 | Added data base, merging, and RT determination |
html | 1595fe9 | jens-daniel-mueller | 2019-10-21 | Build site. |
html | a059c41 | jens-daniel-mueller | 2019-10-21 | Build site. |
Rmd | eff54ce | jens-daniel-mueller | 2019-10-21 | Added CTD read-in |
html | 32ec4f7 | jens-daniel-mueller | 2019-10-21 | Build site. |
Rmd | b2d2bbb | jens-daniel-mueller | 2019-10-21 | Structured data base and response time Rmd |
html | bafa88f | jens-daniel-mueller | 2019-10-21 | Build site. |
Rmd | 53ad162 | jens-daniel-mueller | 2019-10-21 | Structured data base and response time Rmd |
html | 076a36b | jens-daniel-mueller | 2019-10-21 | Build site. |
Rmd | 3e8a32e | jens-daniel-mueller | 2019-10-21 | Structured data base and response time Rmd |
html | b2d0164 | jens-daniel-mueller | 2019-10-21 | Build site. |
Rmd | 53ae361 | jens-daniel-mueller | 2019-10-21 | Added data base and response time Rmd |
library(tidyverse)
library(seacarb)
library(broom)
library(lubridate)
library(tibbletime)
library(patchwork)
Determine response time \(\tau\) from flush periods of the pCO2 sensor
Analyse determined \(\tau\)
Apply response time correction to pCO2 data
First only to profiles for quality assessment
Best parameterization than applied to all data
The following aspects were tested and adjusted to improve the performance of the response time correction.
Response time determination
Response time correction
Quality assessment of response time correction
The sensor was first run with a low power pump (1W). Later - and for most parts of the expedition - with a stronger (8W) pump. Pumps were switched between recordings (data file: SD_datafile_20180718_170417CO2-0618-001.txt):
Logging frequency for all measurement modes (Measure, Zero, Flush) was increased in two steps, It was:
10 sec for all recordings including SD_datafile_20180714_073641CO2-0618-001.txt
2 sec after change in SD_datafile_20180717_121052CO2-0618-001.txt at:
1 sec after change in SD_datafile_20180718_170417CO2-0618-001 at:
Response times were determined by fitting a nonlinear least-squares model with the nls
function as described here by Douglas Watson.
# read merged data file
tm <-
read_csv(
here::here(
"data/intermediate/_merged_data_files/merging_interpolation",
"tm.csv"
),
col_types = cols(
ID = col_character(),
pCO2_analog = col_double(),
pCO2_corr = col_double(),
Zero = col_factor(),
Flush = col_factor(),
Zero_counter = col_integer(),
deployment = col_integer(),
duration = col_double(),
mixing = col_character(),
lat = col_double(),
lon = col_double()
)
)
# select relevant columns
tm <- tm %>%
select(date_time,
ID,
dep,
tem,
Flush,
pCO2_corr,
Zero_counter,
duration,
mixing)
# subset flush data after completed mixing phase
tm_flush <- tm %>%
filter(Flush == 1, mixing == "equilibration")
# calculate flush duration
tm_flush <- tm_flush %>%
group_by(Zero_counter) %>%
mutate(duration = duration - min(duration)) %>%
ungroup()
rm(tm)
An example plot for a nls
model fitted to pCO2 observations during a Flush phase is shown below.
# select example flush period
i_Zero_counter <- 51
# set example duration
tm_flush_counter <- tm_flush %>%
filter(Zero_counter == i_Zero_counter,
duration <= 300)
# fit RT model
fit <- tm_flush_counter %>%
nls(pCO2_corr ~ SSasymp(duration, yf, y0, log_alpha), data = .)
# extract relevant model parameters
tau <- as.numeric(exp(-tidy(fit)[3, 2]))
pCO2_corr_end <- as.numeric(tidy(fit)[1, 2])
pCO2_corr_start <- as.numeric(tidy(fit)[2, 2])
pCO2_corr_delta = pCO2_corr_end - pCO2_corr_start
resid_abs_mean <- mean(abs(resid(fit)))
# plot RT fit
augment(fit) %>%
ggplot(aes(duration, pCO2_corr)) +
geom_vline(xintercept = tau) +
geom_hline(yintercept = pCO2_corr_start + 0.63 * (pCO2_corr_delta)) +
geom_point(shape = 21) +
geom_line(aes(y = .fitted), col = "red") +
labs(y = expression(italic(p)*CO[2] ~ (µatm)), x = "time (sec)") +
theme(panel.grid.minor = element_blank())
ggsave(
here::here(
"output/Plots/Figures_publication/appendix",
"Fig_A1.pdf"
),
width = 83,
height = 50,
dpi = 300,
units = "mm"
)
ggsave(
here::here(
"output/Plots/Figures_publication/appendix",
"Fig_A1.png"
),
width = 83,
height = 50,
dpi = 300,
units = "mm"
)
rm(
tm_flush_counter,
fit,
i_Zero_counter,
tau,
pCO2_corr_delta,
pCO2_corr_end,
pCO2_corr_start,
resid_abs_mean
)
Due to speculations about the dependence of determined response times (\(\tau\)) on the chosen duration of the fit interval, the response time \(\tau\) was determined for all zeroings and for folllowing duration limits:
150, 200, 250, 300, 350, 400, 450, 500 secs
The code chunk below, fits the response to all Flush periods and duration limits, and creates a pdf with a plot for each individual fit.
pdf(
file = here::here(
"output/Plots/response_time",
"tau_determination_pCO2_corr_flushperiods_nls.pdf"
),
onefile = TRUE,
width = 7,
height = 4
)
for (i in unique(tm_flush$Zero_counter)) {
for (max_duration in parameters$duration_intervals) {
tm_flush_counter <- tm_flush %>%
filter(Zero_counter == i, duration <= max_duration)
fit <-
try(tm_flush_counter %>%
nls(pCO2_corr ~ SSasymp(duration, yf, y0, log_alpha), data = .),
TRUE)
if (class(fit) == "nls") {
tau <- as.numeric(exp(-tidy(fit)[3, 2]))
pCO2_corr_end <- as.numeric(tidy(fit)[1, 2])
pCO2_corr_start <- as.numeric(tidy(fit)[2, 2])
pCO2_corr_delta = pCO2_corr_end - pCO2_corr_start
resid_abs_mean <- mean(abs(resid(fit)) / pCO2_corr_end) * 100
temp <- as_tibble(
bind_cols(
Zero_counter = i,
duration = max_duration,
date_time = mean(tm_flush_counter$date_time),
dep = mean(tm_flush_counter$dep),
tem = mean(tm_flush_counter$tem),
pCO2_corr = pCO2_corr_end,
tau = tau,
resid = resid_abs_mean
)
)
if (exists("tau_values")) {
tau_values <- bind_rows(tau_values, temp)
}
else {
tau_values <- temp
}
if (resid_abs_mean > parameters$pCO2_resid_lim) {
warn <- "orange"
}
else {
warn <- "black"
}
print(
augment(fit) %>%
ggplot(aes(duration, pCO2_corr)) +
geom_point(col = warn) +
geom_line(aes(y = .fitted)) +
geom_vline(xintercept = tau) +
geom_hline(yintercept = pCO2_corr_start + 0.63 * (pCO2_corr_delta)) +
labs(
y = expression(italic(p)*CO[2] ~ (µatm)),
x = "Duration of Flush period (s)",
title = paste(
"Zero_counter: ",
i,
"Tau: ",
round(tau, 1),
"Mean absolute residual (%): ",
round(resid_abs_mean, 2)
)
) +
xlim(0, 600)
)
}
else {
temp <- as_tibble(
bind_cols(
Zero_counter = i,
duration = max_duration,
date_time = mean(tm_flush_counter$date_time),
dep = mean(tm_flush_counter$dep),
tem = mean(tm_flush_counter$tem),
pCO2_corr = pCO2_corr_end,
tau = NaN,
resid = NaN
)
)
if (exists("tau_values")) {
tau_values <- bind_rows(tau_values, temp)
}
else {
tau_values <- temp
}
print(
tm_flush_counter %>%
ggplot(aes(duration, pCO2_corr)) +
geom_point(col = "red") +
labs(
y = expression(italic(p)*CO[2] ~ (µatm)),
x = "Duration of Flush period (s)",
title = paste("Zero_counter: ", i,
"nls model failed")
) +
xlim(0, 600)
)
}
}
}
dev.off()
rm(
tm_flush_counter,
fit,
i,
tau,
pCO2_corr_delta,
pCO2_corr_end,
pCO2_corr_start,
temp,
max_duration,
resid_abs_mean,
warn
)
tau_values %>%
write_csv(
here::here(
"data/intermediate/_merged_data_files/response_time",
"tau_values.csv"
)
)
rm(tm_flush)
A pdf with plots of all individual response time fits can be accessed here.
In this pdf, response time fits that exceed the residual criterion (Mean absolute residual >1% of final pCO2) are printed in orange. Data from flush periods without succesful fit are printed red.
A mean absolute residual threshold of >1% of final pCO2 was applied to all determined response times.
# define periods of different pumps used
max_Zero_counter <-
max(unique(tau_values[tau_values$date_time < parameters$pump_switch, ]$Zero_counter))
tau_values <- tau_values %>%
mutate(pump_power = if_else(Zero_counter <= max_Zero_counter, "1W", "8W"))
# subset determined tau values by residual threshold
tau_resid <- tau_values %>%
group_by(Zero_counter) %>%
mutate(resid_max = max(resid, na.rm = TRUE)) %>%
filter(resid_max < parameters$pCO2_resid_lim) %>%
select(-resid_max) %>%
ungroup()
tau_resid_out <- tau_values %>%
group_by(Zero_counter) %>%
mutate(resid_max = max(resid, na.rm = TRUE)) %>%
filter(resid_max > parameters$pCO2_resid_lim) %>%
select(-resid_max) %>%
ungroup()
# Flush periods where model failure occurred
tau_values %>%
filter(is.na(resid)) %>%
group_by(Zero_counter) %>%
summarise(n()) %>%
ungroup()
# Flush periods removed due to residual criterion
tau_resid_out %>%
group_by(Zero_counter) %>%
summarise(n()) %>%
ungroup()
The first determined tau value, which is twice as high as the mean of all others for an unkown reason, was removed.
# mean tau of first RT determination
tau_resid %>%
filter(Zero_counter == 2) %>%
summarise(tau = mean(tau))
# mean tau of all RT determinations before pump switch, except first
tau_resid %>%
filter(Zero_counter != 2, Zero_counter <= 20) %>%
summarise(tau = mean(tau))
# remove first tau value which is twice as high as the mean of all others
tau_resid <- tau_resid %>%
filter(Zero_counter != 2)
Estimated \(\tau\) values were only taken into account when stable environmental pCO2 levels were present. Absence of stable environmental pCO2 was assumed when the mean absolute fit residual was above 1 % of the final equilibrium pCO2. If one model fit (irrespective the chosen fit interval length) of a particular flush period did not match that criterion, the flush period was ignored entirely. Usually, fits with higher duration did not meet this criterion. For some unexplained reason the first \(\tau\) determination resulted in values about twice as high as all other flush periods and was therefore removed as an outlier.
Metrics to characterize the fitting procedure include the number of:
n_Zero_counters <- tau_values %>%
group_by(Zero_counter) %>%
n_groups()
n_duration_intervals <-
length(parameters$duration_intervals)
n_tau_max <- n_Zero_counters * length(parameters$duration_intervals)
n_tau_total <- nrow(tau_values %>% filter(!is.na(resid)))
n_tau_resid <- nrow(tau_resid)
It should be noted that all failed model fits occured in flush periods where the residual criterion was not meet by at least one other fit (i.e. fitting only failed under unstable conditions).
tau_values %>%
ggplot(aes(resid)) +
geom_histogram() +
facet_wrap( ~ duration, labeller = label_both) +
geom_vline(xintercept = parameters$pCO2_resid_lim) +
labs(x = expression(Mean ~ absolute ~ residuals ~ ("%" ~ of ~ equilibrium ~
italic(p)*CO[2])))
No clear dependence of \(\tau\) on the length of the flushing period was found.
tau_resid %>%
group_by(Zero_counter) %>%
mutate(d_tau = tau - mean(tau)) %>%
ggplot(aes(duration, d_tau)) +
geom_hline(yintercept = 0) +
geom_smooth() +
geom_point() +
facet_wrap( ~ Zero_counter, ncol = 4, labeller = label_both) +
labs(x = "Duration (sec)", y = "Deviation from mean tau (sec)")
tau_resid %>%
group_by(Zero_counter) %>%
mutate(d_tau = tau - mean(tau)) %>%
ggplot(aes(duration, d_tau, group = duration)) +
geom_violin() +
geom_point() +
labs(x = "Duration (sec)", y = "Deviation from mean tau (sec)") +
facet_wrap( ~ pump_power)
duration_min_tau_sd <- tau_resid %>%
group_by(Zero_counter) %>%
mutate(d_tau = tau - mean(tau)) %>%
ungroup() %>%
group_by(duration) %>%
summarise(d_tau_sd = sd(d_tau, na.rm = TRUE)) %>%
ungroup() %>%
slice(which.min(d_tau_sd)) %>%
select(duration) %>%
pull()
The lowest standard deviation of \(\tau\) values was found for a duration of:
\(\tau\) values determined with this duration were filtered for further analysis.
tau_resid <- tau_resid %>%
filter(duration == duration_min_tau_sd) %>%
select(-duration)
rm(duration_min_tau_sd)
No obvious change of \(\tau\) over time was detected, but a dependence on the pump used.
ggplot() +
geom_smooth(
data = tau_resid %>% filter(dep < 10),
aes(date_time, tau, linetype = pump_power),
method = "lm",
se = FALSE,
col = "red"
) +
geom_point(data = tau_resid,
aes(date_time, tau, col = dep, shape = pump_power)) +
scale_color_viridis_c(name = "Depth (m)") +
labs(y = "Tau (sec)", x = "Date") +
ylim(0, NA)
A temperature dependence of determined response times \(\tau\) was found, with similar slopes but different intercepts for both pumps used.
tau_resid %>%
ggplot(aes(tem, tau, col = dep)) +
geom_smooth(method = "lm") +
geom_point() +
scale_color_viridis_c(name = "Depth (m)") +
labs(y = "Tau (sec)", x = "Temperature (deg C)") +
facet_wrap( ~ pump_power, labeller = label_both)
For the response times determined near the surface (<10m, restricted temperature range), no clear temperature dependence of \(\tau\) was detected.
tau_resid %>%
filter(dep < 10) %>%
ggplot(aes(tem, tau, col = dep)) +
geom_smooth(method = "lm") +
geom_point() +
scale_color_viridis_c(name = "Depth (m)") +
labs(y = "Tau (sec)", x = "Temperature (deg C)") +
facet_wrap( ~ pump_power, labeller = label_both)
The mean \(\tau\) values are:
# calculate mean tau for each pump
tau_mean <- tau_resid %>%
group_by(pump_power) %>%
summarise(tau = mean(tau, na.rm = TRUE))
tau_mean
# A tibble: 2 x 2
pump_power tau
<chr> <dbl>
1 1W 76.7
2 8W 56.5
The linear response of \(\tau\) on water temperature was fitted as:
# fit linear regression of tau for each pump
tau_fit <- tau_resid %>%
nest_by(pump_power) %>%
mutate(fit = list(lm(tau ~ tem, data = data))) %>%
summarise(tidy(fit)) %>%
select(pump_power, term, estimate) %>%
spread(term, estimate)
tau_fit
# A tibble: 2 x 3
# Groups: pump_power [2]
pump_power `(Intercept)` tem
<chr> <dbl> <dbl>
1 1W 94.5 -1.12
2 8W 70.4 -0.648
tau_fit %>% write_csv(here::here(
"data/intermediate/_merged_data_files/response_time",
"tau_fit.csv"
))
# clean workspace
rm(list = setdiff(ls(), c(
"tau_resid", "tau_fit", "parameters"
)))
Only the T-dependent \(\tau\) estimate will be applied to correct the recorded pCO2 profiles.
Following tasks were performed to prepare data for the response time correction:
tm <- read_csv(here::here("data/intermediate/_merged_data_files/merging_interpolation",
"tm.csv"),
col_types = cols(ID = col_character(),
pCO2_analog = col_double(),
pCO2_corr = col_double(),
Zero = col_factor(),
Flush = col_factor(),
Zero_counter = col_integer(),
deployment = col_integer(),
duration = col_double(),
mixing = col_character(),
lat = col_double(),
lon = col_double()))
# select relevant columns
tm <- tm %>%
select(date_time, ID, type, station, dep, sal, tem,
Zero, Flush, pCO2_corr, deployment, Zero_counter)
# filter profiles
tm <- tm %>%
filter(type == "P")
# assign pump types
tm <- tm %>%
group_by(ID, station) %>%
mutate(duration = as.numeric(date_time - min(date_time)),
pump_power = if_else(date_time < parameters$pump_switch, "1W", "8W")) %>%
arrange(date_time)
# Load profile meta data
meta <- read_csv(here::here("data/input/TinaV/Sensor",
"Sensor_meta.csv"),
col_types = cols(ID = col_character()))
# Merge profiles and meta information
tm <- full_join(tm, meta)
rm(meta)
# assign profiling phases according to meta data
tm <- tm %>%
mutate(phase = "standby",
phase = if_else(duration >= start &
duration < down &
!is.na(down) &
!is.na(start),
"down", phase),
phase = if_else(duration >= down &
duration < lift &
!is.na(lift) &
!is.na(down ),
"low", phase),
phase = if_else(duration >= lift &
duration < up &
!is.na(up ) &
!is.na(lift ),
"mid", phase),
phase = if_else(duration >= up &
duration < end &
!is.na(end ) &
!is.na(up ),
"up", phase))
tm <- tm %>%
select(-c(start, down, lift, up, end, comment))
# discard zero and flush periods
tm <- tm %>%
filter(Zero == 0, Flush == 0)
tm_pCO2_equi <- tm %>%
filter(phase %in% c("mid")) %>%
group_by(ID, station) %>%
top_n(5, row_number()) %>%
summarise(date_time = mean(date_time),
duration = mean(duration),
pCO2_corr = mean(pCO2_corr, na.rm = TRUE),
dep = mean(dep, na.rm = TRUE)) %>%
ungroup()
# tm_pCO2_equi %>%
# write_csv(here::here("data/intermediate/_merged_data_files/response_time",
# "tm_pCO2_equi.csv"))
cast_dep <- tm %>%
pivot_longer(c(dep, pCO2_corr), names_to = "parameter", values_to = "value")
cast_dep_equi <- tm_pCO2_equi %>%
pivot_longer(c(dep, pCO2_corr), names_to = "parameter", values_to = "value")
max_duration <- round(max(cast_dep$duration) / 1000, 0) * 1000
cast_dep_equi_sub <- cast_dep_equi %>%
filter(ID == parameters$example_ID,
station == parameters$example_station)
cast_dep %>%
filter(ID == parameters$example_ID,
station == parameters$example_station) %>%
ggplot(aes(duration, value, col = phase)) +
geom_point(size = 0.5) +
geom_point(data = cast_dep_equi_sub, aes(duration, value), col = "black") +
scale_y_reverse() +
scale_x_continuous(breaks = seq(0, 6000, 500)) +
labs(title = str_c(
"Date: ",
parameters$example_ID,
" | Station: ",
parameters$example_station
)) +
facet_grid(parameter ~ ., scales = "free_y")
rm(cast_dep, cast_dep_equi, cast_dep_equi_sub, max_duration)
cast_dep <- tm %>%
pivot_longer(c(dep, pCO2_corr), names_to = "parameter", values_to = "value")
cast_dep_equi <- tm_pCO2_equi %>%
pivot_longer(c(dep, pCO2_corr), names_to = "parameter", values_to = "value")
max_duration <- round(max(cast_dep$duration)/1000,0)*1000
pdf(file=here::here("output/Plots/response_time",
"time_series_depth_pCO2_corr_by_profile.pdf"),
onefile = TRUE, width = 7, height = 4)
for(i_ID in unique(cast_dep$ID)){
for(i_station in unique(cast_dep$station)){
if (nrow(cast_dep %>% filter(ID == i_ID, station == i_station)) > 0){
cast_dep_equi_sub <- cast_dep_equi %>%
filter(ID == i_ID,
station == i_station)
print(
cast_dep %>%
filter(ID == i_ID,
station == i_station) %>%
ggplot(aes(duration, value, col=phase))+
geom_point(size=0.5)+
geom_point(data = cast_dep_equi_sub, aes(duration, value), col="black")+
scale_y_reverse()+
scale_x_continuous(breaks = seq(0,6000,500))+
labs(title = str_c("Date: ",i_ID," | Station: ",i_station))+
facet_grid(parameter~., scales = "free_y")+
theme_bw()
)
}
}
}
dev.off()
rm(cast_dep, cast_dep_equi, cast_dep_equi_sub, i_station, i_ID, max_duration)
A pdf with all timeseries plots of profiling depth and pCO2 can be accessed here.
We plotted a histogram of mean downcast profiling speed (m/s) per profile and calculated the mean profiling speed.
downcast <- tm %>%
filter(phase == "down")
downcast_speed <- downcast %>%
group_by(ID, station) %>%
summarise(
duration = as.numeric(max(date_time) - min(date_time)),
distance = max(dep) - min(dep),
speed = distance / duration
) %>%
ungroup()
downcast_speed %>%
ggplot(aes(speed)) +
geom_histogram()
downcast_speed %>%
summarise(mean(speed),
sd(speed))
# A tibble: 1 x 2
`mean(speed)` `sd(speed)`
<dbl> <dbl>
1 1.95 0.448
rm(downcast, downcast_speed)
The executed response time correction featured the following aspects:
# Define function for response time correction after Bittig et al, 2018
# RT_corr_Bit <- function(c1, c0, dt, tau) {
# (1 / (2 * ((1 + (
# 2 * tau / dt
# )) ^ (-1)))) * (c1 - (1 - (2 * ((
# 1 + (2 * tau / dt)
# ) ^ (
# -1
# )))) * c0)
# }
# Define function for response time correction after Fiedler et al, 2013
RT_corr <- function(c1, c0, dt, tau) {
(c1 - (c0 * exp(-dt/tau)) ) /
(1 - exp(-dt/tau))
}
# Assign T-dependent response time (tau) values
tau_fit <- tau_fit %>%
rename(tau_intercept = `(Intercept)`, tau_slope = tem)
tm <- full_join(tm, tau_fit)
tm <- tm %>%
mutate(tau = tau_intercept + tau_slope * tem) %>%
select(-tau_intercept,-tau_slope)
# Prepare data set for RT correction
tm <- tm %>%
arrange(date_time) %>%
mutate(dt = as.numeric(as.character(date_time - lag(date_time))))
# determine measurement frequency of sensor
freq <- tm %>%
filter(dt < 13) %>%
group_by(ID) %>%
summarise(dt_mean = round(mean(dt, na.rm = TRUE), 0))
tm <- full_join(tm, freq)
# apply tau factors
tm <- expand_grid(tm, tau_factor = parameters$tau_factors)
tm <- tm %>%
mutate(tau_test = tau * tau_factor)
# Apply RT correction to profiling data
for (i_ID in unique(tm$ID)) {
freq_sub <- freq %>% filter(ID == i_ID) %>% pull(dt_mean)
# window width for smoothing
window <- parameters$smoothing_duration / freq_sub
# function for rolling mean
rolling_mean <-
rollify( ~ mean(.x, na.rm = TRUE), window = window)
# data subset for each cruise day, and RT correction per station
tm_sub <- tm %>%
filter(ID == i_ID) %>%
group_by(station, tau_factor) %>%
mutate(
pCO2_RT = RT_corr(pCO2_corr, lag(pCO2_corr), dt, tau_test),
pCO2_RT = if_else(pCO2_RT %in% c(Inf,-Inf), NaN, pCO2_RT),
# pCO2_RT_Bit = RT_corr_Bit(pCO2_corr, lag(pCO2_corr), dt, tau_test),
# pCO2_RT_Bit = if_else(pCO2_RT_Bit %in% c(Inf,-Inf), NaN, pCO2_RT_Bit),
window = window,
pCO2 = rolling_mean(pCO2_RT)
# pCO2_Bit = rolling_mean(pCO2_RT_Bit)
) %>%
ungroup()
# time shift RT corrected data
shift <- as.integer(as.character(window / 2))
tm_sub <- tm_sub %>%
group_by(station, tau_factor) %>%
mutate(pCO2 = lead(pCO2, shift)) %>%
ungroup()
# append to new data frame
if (exists("tm_RT")) {
tm_RT <- bind_rows(tm_RT, tm_sub)
}
else{
tm_RT <- tm_sub
}
rm(tm_sub, freq_sub, rolling_mean, shift, window)
}
tm <- tm_RT
rm(i_ID, freq, RT_corr, tau_fit, tau_resid, tm_RT)
tm %>%
ggplot(aes(pCO2_RT - pCO2_RT_Bit)) +
geom_histogram(binwidth = 5) +
scale_y_log10() +
scale_x_continuous(limits = c(-20,20))
min(tm$pCO2_RT - tm$pCO2_RT_Bit, na.rm = TRUE)
max(tm$pCO2_RT - tm$pCO2_RT_Bit, na.rm = TRUE)
In the following, the success of the response time correction is assessed through the
as well as the offset between the downcast and:
The offset comparison requires to discretize the continous depth recording. Depth intervals of 1m were chosen.
First, we analyze all profiles individually. Later we’ll merge the information across profiles and come up with a single metric to quantify the quality of the response time correction
equi_cast <- tm_pCO2_equi %>%
filter(ID == parameters$example_ID,
station == parameters$example_station)
tm %>%
filter(
ID == parameters$example_ID,
station == parameters$example_station,
phase %in% c("up", "down")
) %>%
ggplot() +
geom_path(aes(pCO2_corr, dep, linetype = phase, col = "raw")) +
geom_path(aes(pCO2, dep, linetype = phase, col = "corrected")) +
geom_point(data = equi_cast, aes(pCO2_corr, dep)) +
scale_y_reverse() +
coord_cartesian(ylim = c(35, 0),
xlim = c(70, 270)) +
scale_color_brewer(palette = "Set1", name = "") +
labs(title = str_c(
"Date: ",
parameters$example_ID,
" | Station: ",
parameters$example_station
)) +
facet_grid(tau_factor ~ ., labeller = label_both)
rm(equi_cast)
A pdf with all timeseries plots of profiling depth and pCO2 can be accessed here
pdf(
file = here::here("output/Plots/response_time",
"profiles_pCO2.pdf"),
onefile = TRUE,
width = 7,
height = 11
)
for (i_ID in unique(tm$ID)) {
for (i_station in unique(tm$station)) {
if (nrow(tm %>% filter(ID == i_ID, station == i_station)) > 0) {
equi_cast <- tm_pCO2_equi %>%
filter(ID == i_ID,
station == i_station)
print(
tm %>%
filter(ID == i_ID,
station == i_station,
phase %in% c("up", "down")) %>%
ggplot() +
geom_path(aes(
pCO2_corr, dep, linetype = phase, col = "raw"
)) +
geom_path(aes(
pCO2, dep, linetype = phase, col = "corrected"
)) +
geom_point(data = equi_cast, aes(pCO2_corr, dep)) +
scale_y_reverse() +
coord_cartesian(ylim = c(35, 0),
xlim = c(70, 270)) +
scale_color_brewer(palette = "Set1", name = "") +
labs(title = str_c(
"Date: ", i_ID, " | Station: ", i_station
)) +
theme_bw() +
facet_grid(tau_factor ~ ., labeller = label_both)
)
}
}
}
dev.off()
rm(equi_cast, i_ID, i_station)
# pCO2 offset up - down cast
tm_grid <- tm %>%
filter(phase %in% c("down", "up")) %>%
mutate(dep_grid = as.numeric(as.character(cut(
dep, seq(0, 40, 1), seq(0.5, 39.5, 1)
))),
tau_factor = as.factor(tau_factor)) %>%
select(ID, station, tau_factor, p_type, dep_grid, phase, pCO2_corr, pCO2) %>%
group_by(ID, station, tau_factor, p_type, dep_grid, phase) %>%
summarise_all("mean", na.rm = TRUE) %>%
ungroup() %>%
pivot_longer(cols = c(pCO2_corr, pCO2), names_to = "correction") %>%
pivot_wider(names_from = phase, values_from = value) %>%
mutate(
pCO2_delta = up - down,
pCO2_up_down_average = (down + up) / 2,
pCO2_delta_rel = 100 * pCO2_delta / pCO2_up_down_average
)
tm_pCO2_equi_grid <- tm_pCO2_equi %>%
mutate(dep_grid = as.numeric(as.character(cut(
dep, seq(0, 40, 1), seq(0.5, 39.5, 1)
)))) %>%
select(ID, station, dep_grid, pCO2_equi = pCO2_corr)
tm_pCO2_equi_grid_sub <- tm_pCO2_equi_grid %>%
filter(ID == parameters$example_ID,
station == parameters$example_station)
tm_grid %>%
filter(ID == parameters$example_ID,
station == parameters$example_station) %>%
arrange(dep_grid) %>%
ggplot() +
geom_path(aes(down, dep_grid, col = correction, linetype = "down")) +
geom_path(aes(up, dep_grid, col = correction, linetype = "up")) +
geom_point(data = tm_pCO2_equi_grid_sub, aes(pCO2_equi, dep_grid)) +
scale_y_reverse() +
coord_cartesian(ylim = c(35, 0),
xlim = c(70, 270)) +
scale_linetype(name = "cast") +
scale_color_brewer(palette = "Set1", direction = -1) +
labs(
y = "Depth [m]",
x = expression(italic(p) * CO[2] ~ (µatm)),
title = str_c(
"Date: ",
parameters$example_ID,
" | Station: ",
parameters$example_ID
)
) +
facet_grid(tau_factor ~ ., labeller = label_both)
rm(tm_pCO2_equi_grid_sub)
A pdf with all discretized pCO2 profiles can be assessed here
pdf(
file = here::here("output/Plots/response_time",
"profiles_pCO2_grid.pdf"),
onefile = TRUE,
width = 7,
height = 11
)
for (i_ID in unique(tm_grid$ID)) {
for (i_station in unique(tm_grid$station)) {
if (nrow(tm_grid %>% filter(ID == i_ID, station == i_station)) > 0) {
tm_pCO2_equi_grid_sub <- tm_pCO2_equi_grid %>%
filter(ID == i_ID,
station == i_station)
print(
tm_grid %>%
filter(ID == i_ID,
station == i_station) %>%
arrange(dep_grid) %>%
ggplot() +
geom_path(aes(
down, dep_grid, col = correction, linetype = "down"
)) +
geom_path(aes(
up, dep_grid, col = correction, linetype = "up"
)) +
geom_point(data = tm_pCO2_equi_grid_sub, aes(pCO2_equi, dep_grid)) +
scale_y_reverse() +
coord_cartesian(ylim = c(35, 0),
xlim = c(70, 270)) +
scale_linetype(name = "cast") +
scale_color_brewer(palette = "Set1", direction = -1) +
labs(
y = "Depth [m]",
title = str_c("Date: ", i_ID, " | Station: ", i_station)
) +
theme_bw() +
facet_grid(tau_factor ~ ., labeller = label_both)
)
rm(tm_pCO2_equi_grid_sub)
}
}
}
dev.off()
tm_grid %>%
filter(
ID == parameters$example_ID,
station == parameters$example_station,
correction == "pCO2"
) %>%
arrange(dep_grid) %>%
ggplot(aes(pCO2_delta, dep_grid, col = as.factor(tau_factor))) +
geom_path() +
geom_point() +
scale_y_reverse(breaks = seq(0, 40, 2)) +
scale_color_discrete(name = "tau factor") +
labs(
x = expression(Delta ~ italic(p) * CO[2] ~ (µatm)),
y = "Depth [m]",
title = str_c(
"Date: ",
parameters$example_ID,
" | Station: ",
parameters$example_station
)
) +
geom_vline(xintercept = 0) +
geom_vline(xintercept = c(-10, 10), col = "red")
pdf(
file = here::here(
"output/Plots/response_time",
"profiles_pCO2_delta_grid.pdf"
),
onefile = TRUE,
width = 7,
height = 7
)
for (i_ID in unique(tm_grid$ID)) {
for (i_station in unique(tm_grid$station)) {
if (nrow(tm_grid %>% filter(ID == i_ID, station == i_station)) > 0) {
print(
tm_grid %>%
filter(ID == i_ID,
station == i_station,
correction == "pCO2") %>%
arrange(dep_grid) %>%
ggplot(aes(
pCO2_delta, dep_grid, col = as.factor(tau_factor)
)) +
geom_path() +
geom_point() +
scale_y_reverse(breaks = seq(0, 40, 2)) +
scale_color_discrete(name = "tau factor") +
labs(
x = "delta pCO2 [µatm]",
y = "Depth [m]",
title = str_c("Date: ", i_ID, " | Station: ", i_station)
) +
geom_vline(xintercept = 0) +
geom_vline(xintercept = c(-10, 10), col = "red") +
theme_bw()
)
}
}
}
dev.off()
A pdf with all absolute pCO2 offset profiles can be assessed here.
tm_grid %>%
filter(
ID == parameters$example_ID,
station == parameters$example_station,
correction == "pCO2"
) %>%
arrange(dep_grid) %>%
ggplot(aes(pCO2_delta_rel, dep_grid, col = as.factor(tau_factor))) +
geom_path() +
geom_point() +
scale_y_reverse(breaks = seq(0, 40, 2)) +
scale_color_discrete(name = "tau factor") +
labs(
x = expression(Delta ~ italic(p) * CO[2] ~ ("%" ~ of ~ absolute ~ value)),
y = "Depth [m]",
title = str_c(
"Date: ",
parameters$example_ID,
" | Station: ",
parameters$example_station
)
) +
geom_vline(xintercept = 0) +
geom_vline(xintercept = c(-10, 10), col = "red")
A pdf with all relative pCO2 offset profiles can be assessed here.
pdf(
file = here::here(
"output/Plots/response_time",
"profiles_pCO2_delta_rel_grid.pdf"
),
onefile = TRUE,
width = 7,
height = 7
)
for (i_ID in unique(tm_grid$ID)) {
for (i_station in unique(tm_grid$station)) {
if (nrow(tm_grid %>% filter(ID == i_ID, station == i_station)) > 0) {
print(
tm_grid %>%
filter(ID == i_ID,
station == i_station,
correction == "pCO2") %>%
arrange(dep_grid) %>%
ggplot(aes(
pCO2_delta_rel, dep_grid, col = as.factor(tau_factor)
)) +
geom_path() +
geom_point() +
scale_y_reverse(breaks = seq(0, 40, 2)) +
scale_color_discrete(name = "tau factor") +
labs(
x = "delta pCO2 [% of absolute value]",
y = "Depth [m]",
title = str_c("Date: ", i_ID, " | Station: ", i_station)
) +
geom_vline(xintercept = 0) +
geom_vline(xintercept = c(-10, 10), col = "red") +
theme_bw()
)
}
}
}
dev.off()
Referenced values were obtained occasionally through interuption of the profiling measurements to achieve sensor equilibration. Readings under equilibrated conditions were extracted and compared to the corresponding continous cast value.
tm_equi_delta <- full_join(tm_grid, tm_pCO2_equi_grid) %>%
filter(!is.na(pCO2_equi)) %>%
mutate(pCO2_delta_equi = down - pCO2_equi,
pCO2_delta_equi_rel = 100 * pCO2_delta_equi / pCO2_equi)
tm_equi_delta %>%
filter(tau_factor == parameters$tau_factor_used, correction == "pCO2") %>%
ggplot(aes(pCO2_equi, pCO2_delta_equi)) +
geom_hline(yintercept = 0) +
geom_point() +
labs(x = expression(Reference ~ italic(p)*CO[2] ~ (µatm)),
y = expression(Delta ~ italic(p)*CO[2] ~ from ~ reference ~ (µatm)))
tm_equi_delta %>%
ggplot(aes(as.factor(tau_factor), pCO2_delta_equi, fill = correction)) +
geom_hline(yintercept = 0) +
geom_violin() +
scale_fill_brewer(palette = "Set1")
In order to decide, which conditions resulted in the best response correction the mean absoulte and relative pCO2 offset across all profiles was calculated for:
tm_grid_stat <- tm_grid %>%
filter(correction == "pCO2") %>%
group_by(ID, station) %>%
summarise(dep_max = max(dep_grid),
pCO2_max = max(down)) %>%
ungroup()
tm_grid_stat %>%
ggplot(aes(dep_max, pCO2_max)) +
geom_point()
tm_grid <- full_join(tm_grid, tm_grid_stat)
meta <- read_csv(here::here("data/input/TinaV/Sensor",
"Sensor_meta.csv"),
col_types = cols(ID = col_character()))
tm_grid_stat <- full_join(meta, tm_grid_stat)
rm(tm_grid_stat, meta)
Summary metric are restricted to profiles that did not exceed:
# apply restrictions
tm_grid_shallow <- tm_grid %>%
filter(dep_max <= parameters$RT_stats_dep_max,
pCO2_max <= parameters$RT_stats_pCO2_max,
dep_grid <= parameters$RT_stats_dep) %>%
group_by(ID, station, tau_factor, correction) %>%
mutate(nr_na = sum(is.na(pCO2_delta))) %>%
ungroup() %>%
filter(nr_na < parameters$max_gap)
# calculate summary metrics up vs downcast
tm_grid_shallow_sum <- tm_grid_shallow %>%
mutate(pCO2_delta_abs = abs(pCO2_delta),
pCO2_delta_rel_abs = abs(pCO2_delta_rel)) %>%
group_by(tau_factor, dep_grid, correction) %>%
summarise(mean = mean(pCO2_delta, na.rm = TRUE),
sd = sd(pCO2_delta, na.rm = TRUE),
mean_abs = mean(pCO2_delta_abs, na.rm = TRUE),
mean_rel = mean(pCO2_delta_rel, na.rm = TRUE),
sd_rel = sd(pCO2_delta_rel, na.rm = TRUE),
mean_rel_abs = mean(pCO2_delta_rel_abs, na.rm = TRUE)) %>%
ungroup() %>%
pivot_longer(cols = sd:mean_rel_abs,
names_to = "estimate", values_to = "pCO2_delta")
# calculate summary metrics equilibrium comparison
tm_equi_delta_sum <- tm_equi_delta %>%
mutate(pCO2_delta_equi_abs = abs(pCO2_delta_equi),
pCO2_delta_equi_rel_abs = abs(pCO2_delta_equi_rel)) %>%
group_by(correction, tau_factor) %>%
summarise(mean = mean(pCO2_delta_equi, na.rm = TRUE),
mean_abs = mean(pCO2_delta_equi_abs, na.rm = TRUE),
mean_rel = mean(pCO2_delta_equi_rel, na.rm = TRUE),
mean_rel_abs = mean(pCO2_delta_equi_rel_abs, na.rm = TRUE)) %>%
ungroup() %>%
pivot_longer(cols = mean:mean_rel_abs,
names_to = "estimate", values_to = "dpCO2")
tm_grid_shallow_sum %>%
filter(correction == "pCO2",
estimate %in% c("mean_abs", "mean_rel_abs", "sd", "sd_rel")) %>%
ggplot() +
geom_vline(xintercept = 0) +
geom_hline(yintercept = 20) +
geom_vline(xintercept = c(10), col = "red") +
geom_path(aes(pCO2_delta, dep_grid, col = as.factor(tau_factor))) +
scale_y_reverse() +
scale_color_discrete(name = "Tau factor") +
labs(x = expression(Delta ~ italic(p)*CO[2] ~ (µatm)), y = "Depth intervals (1m)") +
facet_grid(estimate ~ .)
Mean offset values calculated for the upper 5 and 20 m of the water column:
tm_grid_shallow_sum %>%
filter(correction == "pCO2",
estimate %in% c("mean_abs"),
tau_factor == parameters$tau_factor_used,
dep_grid < 5) %>%
summarise(dep_lim = 5,
mean(pCO2_delta))
# A tibble: 1 x 2
dep_lim `mean(pCO2_delta)`
<dbl> <dbl>
1 5 2.37
tm_grid_shallow_sum %>%
filter(correction == "pCO2",
estimate %in% c("mean_abs"),
tau_factor == parameters$tau_factor_used,
dep_grid < 20) %>%
summarise(dep_lim = 20,
mean(pCO2_delta))
# A tibble: 1 x 2
dep_lim `mean(pCO2_delta)`
<dbl> <dbl>
1 20 7.16
Likewise, we analyse the offset from the pCO2 reference value:
tm_equi_delta_sum %>%
filter(estimate %in% c("mean_abs", "mean_rel_abs")) %>%
ggplot(aes(tau_factor, dpCO2, linetype = correction, shape = correction)) +
geom_point() +
geom_hline(yintercept = 0) +
labs(x = "Tau factor", y = expression(Mean ~ Delta ~ italic(p)*CO[2])) +
facet_wrap( ~ estimate)
i_tau_factor <- "1"
cast_dep <- tm %>%
filter(tau_factor == i_tau_factor) %>%
pivot_longer(c(dep, pCO2_corr, pCO2),
names_to = "parameter",
values_to = "value")
cast_dep_equi <- tm_pCO2_equi %>%
pivot_longer(c(dep, pCO2_corr), names_to = "parameter", values_to = "value")
tm_sub <- tm %>%
filter(tau_factor == i_tau_factor)
tm_grid_sub <- tm_grid %>%
filter(tau_factor == i_tau_factor)
max_duration <- round(max(cast_dep$duration) / 1000, 0) * 1000
pdf(
file = here::here("output/Plots/response_time",
"all_plots.pdf"),
onefile = TRUE,
width = 7,
height = 10
)
for (i_ID in unique(tm$ID)) {
for (i_station in unique(tm$station)) {
# i_ID <- unique(cast_dep$ID)[1]
# i_station <- unique(cast_dep$station)[1]
i_ID
i_station
if (nrow(cast_dep %>% filter(ID == i_ID, station == i_station)) > 0) {
if (nrow(tm %>% filter(ID == i_ID, station == i_station)) > 0) {
if (nrow(tm_grid %>% filter(ID == i_ID, station == i_station)) > 0) {
cast_dep_equi_sub <- cast_dep_equi %>%
filter(ID == i_ID,
station == i_station)
p_time_series <- cast_dep %>%
filter(ID == i_ID,
station == i_station) %>%
ggplot(aes(duration, value, col = phase)) +
geom_point(size = 0.5) +
geom_point(data = cast_dep_equi_sub,
aes(duration, value),
col = "black") +
scale_y_reverse() +
scale_x_continuous(breaks = seq(0, 6000, 500)) +
labs(title = str_c("ID: ", i_ID, " | Station: ", i_station)) +
facet_grid(parameter ~ ., scales = "free_y") +
theme_bw()
p_profile <- tm_sub %>%
filter(ID == i_ID,
station == i_station,
phase %in% c("up", "down")) %>%
ggplot() +
geom_path(aes(pCO2_corr, dep, linetype = phase, col = "raw")) +
geom_path(aes(pCO2, dep, linetype = phase, col = "corrected")) +
scale_y_reverse() +
coord_cartesian(ylim = c(25, 0), xlim = c(70, 250)) +
scale_color_brewer(palette = "Set1",
name = "",
guide = FALSE) +
scale_linetype(guide = FALSE) +
labs(y = "Depth [m]",
x = "pCO2",
title = "full res")
tm_pCO2_equi_grid_sub <- tm_pCO2_equi_grid %>%
filter(ID == i_ID,
station == i_station)
p_profile_grid <- tm_grid_sub %>%
filter(ID == i_ID,
station == i_station) %>%
arrange(dep_grid) %>%
ggplot() +
geom_path(aes(down, dep_grid, col = correction, linetype = "down")) +
geom_path(aes(up, dep_grid, col = correction, linetype = "up")) +
geom_point(data = tm_pCO2_equi_grid_sub, aes(pCO2_equi, dep_grid)) +
scale_y_reverse() +
coord_cartesian(ylim = c(25, 0), xlim = c(70, 250)) +
scale_linetype(name = "cast") +
scale_color_brewer(palette = "Set1", direction = -1) +
labs(x = "pCO2",
title = "1m grid") +
theme(axis.title.y = element_blank(),
axis.text.y = element_blank())
p_delta_abs <- tm_grid %>%
filter(ID == i_ID,
station == i_station,
correction == "pCO2") %>%
arrange(dep_grid) %>%
ggplot(aes(pCO2_delta, dep_grid, col = as.factor(tau_factor))) +
geom_path() +
geom_point() +
scale_y_reverse(breaks = seq(0, 40, 2)) +
scale_color_discrete(name = "tau factor", guide = FALSE) +
labs(x = "delta pCO2 [µatm]", y = "Depth [m]") +
geom_vline(xintercept = 0) +
geom_vline(xintercept = c(-10, 10), col = "red")
p_delta_rel <- tm_grid %>%
filter(ID == i_ID,
station == i_station,
correction == "pCO2") %>%
arrange(dep_grid) %>%
ggplot(aes(pCO2_delta_rel, dep_grid, col = as.factor(tau_factor))) +
geom_path() +
geom_point() +
scale_y_reverse(breaks = seq(0, 40, 2)) +
scale_color_discrete(name = "tau factor") +
labs(x = "delta pCO2 [% of absolute value]", y = "Depth [m]") +
geom_vline(xintercept = 0) +
geom_vline(xintercept = c(-10, 10), col = "red") +
theme(axis.title.y = element_blank(),
axis.text.y = element_blank())
print(p_time_series / (p_profile |
p_profile_grid) / (p_delta_abs | p_delta_rel))
rm(p_time_series,
p_profile,
p_profile_grid,
p_delta_abs,
p_delta_rel)
}
}
}
}
}
dev.off()
rm(
cast_dep,
cast_dep_equi,
cast_dep_equi_sub,
i_station,
i_ID,
max_duration,
tm_pCO2_equi_grid_sub
)
Finally, the response time correction was applied to the full data set (not only profile data) based on the optimum parameterization determined above.
# # Response time correction approach after Bittig et al, 2018
# RT_corr <- function(c1, c0, dt, tau) {
# (1 / (2 * ((1 + (
# 2 * tau / dt
# )) ^ (-1)))) * (c1 - (1 - (2 * ((
# 1 + (2 * tau / dt)
# ) ^ (
# -1
# )))) * c0)
# }
# Define function for response time correction after Fiedler et al, 2013
RT_corr <- function(c1, c0, dt, tau) {
(c1 - (c0 * exp(-dt/tau)) ) /
(1 - exp(-dt/tau))
}
tm <-
read_csv(
here::here(
"data/intermediate/_merged_data_files/merging_interpolation",
"tm.csv"
),
col_types = cols(
ID = col_character(),
pCO2_analog = col_double(),
pCO2_corr = col_double(),
Zero = col_factor(),
Flush = col_factor(),
Zero_counter = col_integer(),
deployment = col_integer(),
duration = col_double(),
mixing = col_character(),
lat = col_double(),
lon = col_double()
)
)
tm <- tm %>%
group_by(ID, station) %>%
mutate(
duration = as.numeric(date_time - min(date_time)),
pump_power = if_else(date_time < ymd_hms("2018-07-17;13:08:34"), "1W", "8W")
) %>%
arrange(date_time)
tau_fit <-
read_csv(here::here(
"data/intermediate/_merged_data_files/response_time",
"tau_fit.csv"
))
# Assign T-dependent response time (tau) values
tau_fit <- tau_fit %>%
rename(tau_intercept = `(Intercept)`, tau_slope = tem)
tm <- full_join(tm, tau_fit)
tm <- tm %>%
mutate(tau = tau_intercept + tau_slope * tem) %>%
select(-tau_intercept, -tau_slope)
# Prepare data set for RT correction
tm <- tm %>%
group_by(ID, station) %>%
arrange(date_time) %>%
mutate(dt = as.numeric(as.character(date_time - lag(date_time)))) %>%
ungroup()
# determine measurement frequency
freq <- tm %>%
filter(dt < 13) %>%
group_by(ID) %>%
summarise(dt_mean = round(mean(dt, na.rm = TRUE), 0))
tm <- full_join(tm, freq)
# apply tau factor used
tm <- expand_grid(tm, tau_factor = parameters$tau_factor_used)
tm <- tm %>%
mutate(tau_test = tau * tau_factor)
# Apply RT correction to entire data set
for (i_ID in unique(tm$ID)) {
#i_ID <- "180716"
freq_sub <- freq %>% filter(ID == i_ID) %>% pull(dt_mean)
window <- 30 / freq_sub
rolling_mean <-
rollify(~ mean(.x, na.rm = TRUE), window = window)
tm_sub <- tm %>%
filter(ID == i_ID) %>%
group_by(station) %>%
mutate(
pCO2_RT = RT_corr(pCO2_corr, lag(pCO2_corr), dt, tau_test),
pCO2_RT = if_else(pCO2_RT %in% c(Inf, -Inf), NaN, pCO2_RT),
window = window,
pCO2 = rolling_mean(pCO2_RT)
) %>%
ungroup()
# time shift RT corrected data
shift <- as.integer(as.character(window / 2))
tm_sub <- tm_sub %>%
group_by(station) %>%
mutate(pCO2 = lead(pCO2, shift)) %>%
ungroup()
if (exists("tm_corr")) {
tm_corr <- bind_rows(tm_corr, tm_sub)
}
else{
tm_corr <- tm_sub
}
rm(tm_sub, freq_sub, rolling_mean, shift, window)
}
rm(RT_corr, i_ID, freq)
tm_corr <- tm_corr %>%
select(-c(tau, tau_factor, tau_test, window))
rm(tm)
Below, histograms of RT corrected pCO2 are shown, for selected ranges of pCO2.
tm_corr %>%
ggplot(aes(pCO2)) +
geom_histogram()
tm_corr %>%
filter(pCO2 < 0) %>%
ggplot(aes(pCO2)) +
geom_histogram()
tm_corr %>%
filter(pCO2 < 200,
pCO2 > 0) %>%
ggplot(aes(pCO2)) +
geom_histogram()
Response time corrected pCO2 data with absolute values >50 are written to file for further analysis. Negative pCO2 readings are considered artefacts of the response time correction.
tm_corr %>%
filter(pCO2 > 50) %>%
write_csv(
here::here(
"data/intermediate/_merged_data_files/response_time",
"tm_RT_all.csv"
)
)
A change in DIC of 1 µmol kg-1 corresponds to a change in pCO2 of around 1 µatm, in the Central Baltic Sea at a pCO2 of around 100 µatm (summertime conditions).
df <- data.frame(cbind((c(1720)),
(c(7))))
Tem <- seq(5, 25, 5)
pCO2 <- seq(50, 500, 20)
df <- merge(df, Tem)
names(df) <- c("AT", "S", "Tem")
df <- merge(df, pCO2)
names(df) <- c("AT", "S", "Tem", "pCO2")
df$AT <- df$AT * 1e-6
df$DIC <-
carb(
flag = 24,
var1 = df$pCO2,
var2 = df$AT,
S = df$S,
T = df$Tem,
k1k2 = "m10",
kf = "dg",
pHscale = "T"
)[, 16]
df$pCO2.corr <-
carb(
flag = 15,
var1 = df$AT,
var2 = df$DIC,
S = df$S,
T = df$Tem,
k1k2 = "m10",
kf = "dg",
pHscale = "T"
)[, 9]
df$pCO2.2 <- df$pCO2.corr + 25
df$DIC.2 <-
carb(
flag = 24,
var1 = df$pCO2.2,
var2 = df$AT,
S = df$S,
T = df$Tem,
k1k2 = "m10",
kf = "dg",
pHscale = "T"
)[, 16]
df$ratio <- (df$pCO2.2 - df$pCO2.corr) / (df$DIC.2 * 1e6 - df$DIC * 1e6)
df %>%
ggplot(aes(pCO2, ratio, col = as.factor(Tem))) +
geom_line() +
scale_color_viridis_d(option = "C", name = "Tem [°C]") +
labs(x = expression(italic(p)*CO[2] ~ (µatm)),
y = expression(Delta ~ italic(p)*CO[2] ~ "/" ~ Delta ~ DIC ~ (µatm ~ µmol ^ {
-1
} ~ kg))) +
scale_y_continuous(limits = c(0, 8), breaks = seq(0, 10, 1))
rm(df, Tem, pCO2)
sessionInfo()
R version 4.0.3 (2020-10-10)
Platform: x86_64-w64-mingw32/x64 (64-bit)
Running under: Windows 10 x64 (build 19042)
Matrix products: default
locale:
[1] LC_COLLATE=English_Germany.1252 LC_CTYPE=English_Germany.1252
[3] LC_MONETARY=English_Germany.1252 LC_NUMERIC=C
[5] LC_TIME=English_Germany.1252
attached base packages:
[1] stats graphics grDevices utils datasets methods base
other attached packages:
[1] patchwork_1.1.1 tibbletime_0.1.6 lubridate_1.7.9.2 broom_0.7.5
[5] seacarb_3.2.14 oce_1.2-0 gsw_1.0-5 testthat_3.0.1
[9] forcats_0.5.0 stringr_1.4.0 dplyr_1.0.2 purrr_0.3.4
[13] readr_1.4.0 tidyr_1.1.2 tibble_3.0.4 ggplot2_3.3.3
[17] tidyverse_1.3.0 workflowr_1.6.2
loaded via a namespace (and not attached):
[1] httr_1.4.2 viridisLite_0.3.0 jsonlite_1.7.2 splines_4.0.3
[5] here_1.0.1 modelr_0.1.8 assertthat_0.2.1 highr_0.8
[9] cellranger_1.1.0 yaml_2.2.1 pillar_1.4.7 backports_1.2.1
[13] lattice_0.20-41 glue_1.4.2 digest_0.6.27 RColorBrewer_1.1-2
[17] promises_1.1.1 rvest_0.3.6 colorspace_2.0-0 htmltools_0.5.0
[21] httpuv_1.5.4 Matrix_1.2-18 pkgconfig_2.0.3 haven_2.3.1
[25] scales_1.1.1 whisker_0.4 later_1.1.0.1 git2r_0.27.1
[29] mgcv_1.8-33 generics_0.1.0 farver_2.0.3 ellipsis_0.3.1
[33] withr_2.3.0 cli_2.2.0 magrittr_2.0.1 crayon_1.3.4
[37] readxl_1.3.1 evaluate_0.14 ps_1.5.0 fs_1.5.0
[41] fansi_0.4.1 nlme_3.1-149 xml2_1.3.2 tools_4.0.3
[45] hms_0.5.3 lifecycle_0.2.0 munsell_0.5.0 reprex_0.3.0
[49] compiler_4.0.3 rlang_0.4.10 grid_4.0.3 rstudioapi_0.13
[53] labeling_0.4.2 rmarkdown_2.6 gtable_0.3.0 DBI_1.1.0
[57] R6_2.5.0 knitr_1.30 utf8_1.1.4 rprojroot_2.0.2
[61] stringi_1.5.3 Rcpp_1.0.5 vctrs_0.3.6 dbplyr_2.0.0
[65] tidyselect_1.1.0 xfun_0.19