Last updated: 2021-03-03

Checks: 7 0

Knit directory: emlr_mod_v_XXX/

This reproducible R Markdown analysis was created with workflowr (version 1.6.2). The Checks tab describes the reproducibility checks that were applied when the results were created. The Past versions tab lists the development history.


Great! Since the R Markdown file has been committed to the Git repository, you know the exact version of the code that produced these results.

Great job! The global environment was empty. Objects defined in the global environment can affect the analysis in your R Markdown file in unknown ways. For reproduciblity it’s best to always run the code in an empty environment.

The command set.seed(20200707) was run prior to running the code in the R Markdown file. Setting a seed ensures that any results that rely on randomness, e.g. subsampling or permutations, are reproducible.

Great job! Recording the operating system, R version, and package versions is critical for reproducibility.

Nice! There were no cached chunks for this analysis, so you can be confident that you successfully produced the results during this run.

Great job! Using relative paths to the files within your workflowr project makes it easier to run your code on other machines.

Great! You are using Git for version control. Tracking code development and connecting the code version to the results is critical for reproducibility.

The results in this page were generated with repository version 8d92471. See the Past versions tab to see a history of the changes made to the R Markdown and HTML files.

Note that you need to be careful to ensure that all relevant files for the analysis have been committed to Git prior to generating the results (you can use wflow_publish or wflow_git_commit). workflowr only checks the R Markdown file, but you know if there are other scripts or data files that it depends on. Below is the status of the Git repository when the results were generated:


Ignored files:
    Ignored:    .Rhistory
    Ignored:    .Rproj.user/

Unstaged changes:
    Modified:   data/auxillary/params_local.rds

Note that any generated files, e.g. HTML, png, CSS, etc., are not included in this status report because it is ok for generated content to have uncommitted changes.


These are the previous versions of the repository in which changes were made to the R Markdown (analysis/eMLR_model_fitting.Rmd) and HTML (docs/eMLR_model_fitting.html) files. If you’ve configured a remote Git repository (see ?wflow_git_remote), click on the hyperlinks in the table below to view the files as they were in that past version.

File Version Author Date Message
html cb63c16 Donghe-Zhu 2021-03-03 Build site.
html ffda45a Donghe-Zhu 2021-03-03 Build site.
html 691ba81 Donghe-Zhu 2021-03-03 Build site.
html c5e45a2 Donghe-Zhu 2021-03-03 Build site.
html 89c3e58 Donghe-Zhu 2021-03-03 Build site.
html c407a50 Donghe-Zhu 2021-03-03 Build site.
html c911669 Donghe-Zhu 2021-03-03 Build site.
Rmd e1f9d21 Donghe-Zhu 2021-03-03 local rebuild
html b71c719 Donghe-Zhu 2021-03-01 Build site.
html 13666ca Donghe-Zhu 2021-03-01 Build site.
Rmd c3195f4 Donghe-Zhu 2021-03-01 local rebuild
html c6e60fe Donghe-Zhu 2021-03-01 Build site.
Rmd 8ef147d Donghe-Zhu 2021-03-01 local rebuild
html 7a388f7 Donghe-Zhu 2021-03-01 Build site.
html 799e913 Donghe-Zhu 2021-03-01 Build site.
Rmd aa780a7 Donghe-Zhu 2021-03-01 local rebuild
html 66ff99f Donghe-Zhu 2021-03-01 Build site.
html ac9bb7a Donghe-Zhu 2021-02-28 Build site.
html efdc047 Donghe-Zhu 2021-02-28 Build site.
html e9a7418 Donghe-Zhu 2021-02-28 Build site.
Rmd eac1b0e Donghe-Zhu 2021-02-28 local rebuild
html e152917 Donghe-Zhu 2021-02-28 Build site.
html feb991c Donghe-Zhu 2021-02-27 Build site.
Rmd 4563314 Donghe-Zhu 2021-02-27 local rebuild
html 287123c Donghe-Zhu 2021-02-27 Build site.
Rmd 764a9c2 Donghe-Zhu 2021-02-27 local rebuild
html 54d5b5b Donghe-Zhu 2021-02-27 Build site.
Rmd 2e836bf Donghe-Zhu 2021-02-27 local rebuild
html 330f064 Donghe-Zhu 2021-02-27 Build site.
Rmd f360282 Donghe-Zhu 2021-02-27 local rebuild
html adbc9bc Donghe-Zhu 2021-02-27 Build site.
Rmd a8a8f9c Donghe-Zhu 2021-02-27 local rebuild
html 5937141 Donghe-Zhu 2021-02-27 Build site.
Rmd 5f0bfca Donghe-Zhu 2021-02-27 local rebuild
html 4414bbf Donghe-Zhu 2021-02-27 Build site.
html a265efb Donghe-Zhu 2021-02-27 Build site.
html 19edd1e Donghe-Zhu 2021-02-27 Build site.
Rmd 1ae5bb4 Donghe-Zhu 2021-02-27 local rebuild
html f20483f Donghe-Zhu 2021-02-26 Build site.
html 6a2c7b3 Donghe-Zhu 2021-02-25 Build site.
html 02b976d Donghe-Zhu 2021-02-24 Build site.
html 354c224 Donghe-Zhu 2021-02-24 Build site.
Rmd d910d39 Donghe-Zhu 2021-02-24 local rebuild
html 1a0a88a Donghe-Zhu 2021-02-24 Build site.
Rmd 663e891 Donghe-Zhu 2021-02-24 local rebuild
html 57f701e Donghe-Zhu 2021-02-24 Build site.
html 06f3149 Donghe-Zhu 2021-02-16 Build site.
html 401eab3 Donghe-Zhu 2021-02-15 Build site.
html e3bba84 Donghe-Zhu 2021-02-15 Build site.
html 5dce4b1 Donghe-Zhu 2021-02-15 Build site.
Rmd 35b0f2e Donghe-Zhu 2021-02-15 local rebuild
html 4469a0c Donghe-Zhu 2021-02-13 Build site.
Rmd 8186d57 Donghe-Zhu 2021-02-10 apply nr_obs
html 5ae6a69 Donghe-Zhu 2021-02-10 Build site.
Rmd eeb6557 Donghe-Zhu 2021-02-10 local rebuild
html 05385dc Donghe-Zhu 2021-02-10 Build site.
html f791ae4 Donghe-Zhu 2021-02-09 Build site.
html f71ae34 Donghe-Zhu 2021-02-09 Build site.
html c011832 Donghe-Zhu 2021-02-09 Build site.
html a145fa7 Donghe-Zhu 2021-02-09 Build site.
Rmd 37a41c8 Donghe-Zhu 2021-02-09 local rebuild
html c344e42 Donghe-Zhu 2021-02-08 Build site.
Rmd 8f5fa79 Donghe-Zhu 2021-02-08 local rebuild
html 2f095d7 Donghe-Zhu 2021-02-07 Build site.
html 2305044 Donghe-Zhu 2021-02-07 Build site.
Rmd c3638c1 Donghe-Zhu 2021-02-07 local rebuild
html 1fad5f1 Donghe-Zhu 2021-02-07 Build site.
html ca03c39 Donghe-Zhu 2021-02-07 Build site.
html e2ffc14 Donghe-Zhu 2021-02-05 Build site.
html cd7c52c Donghe-Zhu 2021-02-04 Build site.
Rmd bcf91a8 jens-daniel-mueller 2021-02-04 separate MLR tables, added plot residuals vs location
html bcf84f4 Donghe-Zhu 2021-02-02 Build site.
html a518739 Donghe-Zhu 2021-02-01 Build site.
html 61666de Donghe-Zhu 2021-01-31 Build site.
html 865b582 Donghe-Zhu 2021-01-31 Build site.
html 3e68089 Donghe-Zhu 2021-01-31 Build site.
html ecf335c Donghe-Zhu 2021-01-31 Build site.
html a618965 Donghe-Zhu 2021-01-31 Build site.
html 59e006e Donghe-Zhu 2021-01-31 Build site.
html a1c8f87 Donghe-Zhu 2021-01-31 Build site.
html ae5c18f Donghe-Zhu 2021-01-31 Build site.
html b50fe52 Donghe-Zhu 2021-01-31 Build site.
Rmd ac99ae5 jens-daniel-mueller 2021-01-29 code review
html ac99ae5 jens-daniel-mueller 2021-01-29 code review
html b5bdcaf Donghe-Zhu 2021-01-29 Build site.
Rmd b234505 Donghe-Zhu 2021-01-29 MLR approach across all depth
html 442010d Donghe-Zhu 2021-01-29 Build site.
Rmd e67e7dd Donghe-Zhu 2021-01-29 surface equilibrium approach across all latitudes irrespective of gamma
html 372adf5 Donghe-Zhu 2021-01-29 Build site.
html af8788e Donghe-Zhu 2021-01-29 Build site.
html 21c91c9 Donghe-Zhu 2021-01-29 Build site.
html eded038 Donghe-Zhu 2021-01-29 Build site.
html 541d4dd Donghe-Zhu 2021-01-29 Build site.
html 6a75576 Donghe-Zhu 2021-01-28 Build site.
html 16fba40 Donghe-Zhu 2021-01-28 Build site.
Rmd aecf0c6 Donghe-Zhu 2021-01-28 diagnostic ploting
Rmd a02684e Donghe-Zhu 2021-01-28 error
Rmd 4584be9 Donghe-Zhu 2021-01-28 latest
html 12bc567 Donghe-Zhu 2021-01-27 Build site.
html ceed31b Donghe-Zhu 2021-01-27 Build site.
html 342402d Donghe-Zhu 2021-01-27 Build site.
html 5bad5c2 Donghe-Zhu 2021-01-27 Build site.
Rmd c2c9529 Donghe-Zhu 2021-01-27 random subsetting based on lat
html 61efb56 Donghe-Zhu 2021-01-25 Build site.
html 48f638e Donghe-Zhu 2021-01-25 Build site.
html c1cec47 Donghe-Zhu 2021-01-25 Build site.
html 05ffb0c Donghe-Zhu 2021-01-25 Build site.
html 8b97165 Donghe-Zhu 2021-01-25 Build site.
html c569946 Donghe-Zhu 2021-01-24 Build site.
html a2f0d56 Donghe-Zhu 2021-01-23 Build site.
html 28509fc Donghe-Zhu 2021-01-23 Build site.
html 4c28e4a Donghe-Zhu 2021-01-22 Build site.
html 24cc264 jens-daniel-mueller 2021-01-22 cleaned /docs before creating copies
html 88eb28f Donghe-Zhu 2021-01-21 Build site.
html 2679490 Donghe-Zhu 2021-01-21 Build site.
html 7891955 Donghe-Zhu 2021-01-21 Build site.
html d4cf1cb Donghe-Zhu 2021-01-21 Build site.
Rmd 167eeec Donghe-Zhu 2021-01-21 surface DIC calculation with atmospheric equilibrium option
html 1f3e5b6 jens-daniel-mueller 2021-01-20 Build site.
html 0e7bdf1 jens-daniel-mueller 2021-01-15 cleaning template repository
html 73cbef3 jens-daniel-mueller 2021-01-15 Build site.
html 4571843 jens-daniel-mueller 2021-01-14 revision and html deleted for template copying
html 23151cd jens-daniel-mueller 2021-01-14 Build site.
html b3564aa jens-daniel-mueller 2021-01-14 Build site.
html 8d032c3 jens-daniel-mueller 2021-01-14 Build site.
html 022871c Donghe-Zhu 2021-01-13 Build site.
Rmd d44f36f Donghe-Zhu 2021-01-13 reorder analysis final
html 17dee1d jens-daniel-mueller 2021-01-13 Build site.
Rmd 9e04fd7 jens-daniel-mueller 2021-01-13 local rebuild after revision
html a076226 Donghe-Zhu 2021-01-11 Build site.
Rmd 52eff18 Donghe-Zhu 2021-01-09 Implemet model_run and subsetting
html 7cdea0c jens-daniel-mueller 2021-01-06 Build site.
Rmd b5934dd jens-daniel-mueller 2021-01-06 local rebuild after revision
html fa85b93 jens-daniel-mueller 2021-01-06 Build site.
html e5cb81a Donghe-Zhu 2021-01-05 Build site.
Rmd 608cc45 Donghe-Zhu 2021-01-05 modification of analysis
html a499f10 Donghe-Zhu 2021-01-05 Build site.
Rmd 715bdb4 Donghe-Zhu 2021-01-02 model modification
html fb8a752 Donghe-Zhu 2020-12-23 Build site.
Rmd 82e3c9c Donghe-Zhu 2020-12-23 first build after creating model template
html 8fae0b2 Donghe-Zhu 2020-12-21 Build site.
Rmd 00a1322 Donghe-Zhu 2020-12-21 first build after creating model template
Rmd d73ae35 Donghe-Zhu 2020-12-21 first version with lm error
html c8b76b3 jens-daniel-mueller 2020-12-19 Build site.
Rmd b5fedce jens-daniel-mueller 2020-12-19 first build after creating model template
Rmd 8e8abf5 Jens Müller 2020-12-18 Initial commit

1 Required data

Required are:

  • cleaned and prepared GLODAP-based synthetic model subsetting file
GLODAP <-
  read_csv(paste(path_version_data,
                 "GLODAPv2.2020_MLR_fitting_ready.csv",
                 sep = ""))

2 Predictor combinations

Find all possible combinations of following considered predictor variables:

  • sal, temp, aou, nitrate, silicate, phosphate, phosphate_star
# the following code is a workaround to find all predictor combinations
# using the olsrr package and fit all models for one era, slab, and basin

i_basin <- unique(GLODAP$basin)[1]
i_era   <- unique(GLODAP$era)[1]

# subset one basin and era for fitting
GLODAP_basin_era <- GLODAP %>%
  filter(basin == i_basin, era == i_era)

i_gamma_slab <- unique(GLODAP_basin_era$gamma_slab)[1]
print(i_gamma_slab)

# subset one gamma slab
GLODAP_basin_era_slab <- GLODAP_basin_era %>%
  filter(gamma_slab == i_gamma_slab)

# fit the full linear model, i.e. all predictor combinations
lm_full <- lm(paste(
  params_local$MLR_target,
  paste(params_local$MLR_predictors, collapse = " + "),
  sep = " ~ "
),
data = GLODAP_basin_era_slab)

# fit linear models for all possible predictor combinations
# unfortunately, this functions does not provide model coefficients (yet)
lm_all <- ols_step_all_possible(lm_full)

# convert to tibble
lm_all <- as_tibble(lm_all)

# extract relevant columns and format model formula
lm_all <- lm_all %>% 
  select(n, predictors) %>% 
  mutate(lm_coeff = str_replace_all(predictors, " ", " + "),
         lm_coeff = paste(params_local$MLR_target, "~", lm_coeff))

# remove certain predictor combinations
# lm_rm_ph <- lm_all %>%
#   filter(str_detect(lm_coeff, "phosphate_star")) %>%
#   mutate(lm_coeff_filter = str_remove(lm_coeff, "phosphate_star")) %>%
#   filter(
#     str_detect(lm_coeff_filter, "oxygen") &
#       str_detect(lm_coeff_filter, "phosphate")
#   )

# lm_rm_si <- lm_all %>%
#   filter(str_detect(lm_coeff, "silicate_star")) %>%
#   mutate(lm_coeff_filter = str_remove(lm_coeff, "silicate_star")) %>%
#   filter(str_detect(lm_coeff_filter, "silicate"))

# lm_rm_o2 <- lm_all %>%
#   filter(str_detect(lm_coeff, "phosphate_star")) %>%
#   mutate(lm_coeff_filter = str_remove(lm_coeff, "phosphate_star")) %>%
#   filter(
#     str_detect(lm_coeff_filter, "phosphate") &
#       str_detect(lm_coeff_filter, "oxygen")
#   )

# lm_rm <- bind_rows(lm_rm_ph, lm_rm_o2) %>%
#   select(-lm_coeff_filter) %>%
#   unique()


# remove temp sal predictor combination
lm_all <- lm_all %>%
  # filter(!(
  #   str_detect(lm_coeff, "temp") &
  #     str_detect(lm_coeff, "phosphate_star")
  # )) %>%
  mutate(lm_coeff_filter = str_remove(lm_coeff, "phosphate_star")) %>%
  filter(!(str_detect(lm_coeff_filter, "nitrate") &
             str_detect(lm_coeff_filter, "phosphate")
  )) %>%
  filter(!(
    str_detect(lm_coeff_filter, "temp") &
      str_detect(lm_coeff_filter, "sal")
  )) %>%
  filter(!(
    str_detect(lm_coeff_filter, "oxygen") &
      str_detect(lm_coeff_filter, "aou")
  )) %>%
  select(-lm_coeff_filter)

# lm_rm <- lm_rm_ph %>%
#   select(-lm_coeff_filter) %>%
#   unique()
# 
# lm_all <- anti_join(lm_all, lm_rm)

# remove helper objects
rm(
  i_gamma_slab,
  i_era,
  i_basin,
  GLODAP_basin_era,
  GLODAP_basin_era_slab,
  lm_full,
  lm_rm_ph,
  lm_rm_si,
  lm_rm_o2,
  lm_rm
)

3 Apply predictor threshold

Select combinations with a total number of predictors in the range:

  • Minimum: 3
  • Maximum: 9
lm_all <- lm_all %>% 
  filter(n >= params_local$MLR_predictors_min,
         n <= params_local$MLR_predictors_max)

This results in a total number of MLR models of:

  • 45

4 Fit all models

Individual linear regression models were fitted for the chosen target variable:

  • cstar_tref

as a function of each predictor combination. Fitting was performed separately within each basin, era, and slab. Model diagnostics, such as the root mean squared error (RMSE), were calculated for each fitted model.

# loop across all basins, era, gamma slabs, and MLRs
# fit all MLR models
for (i_basin in unique(GLODAP$basin)) {
  for (i_era in unique(GLODAP$era)) {
    #i_basin <- unique(GLODAP$basin)[1]
    #i_era   <- unique(GLODAP$era)[1]
    print(i_basin)
    print(i_era)
    
    GLODAP_basin_era <- GLODAP %>%
      filter(basin == i_basin, era == i_era)
    
    for (i_gamma_slab in unique(GLODAP_basin_era$gamma_slab)) {
      #i_gamma_slab <- unique(GLODAP_basin_era$gamma_slab)[1]
      print(i_gamma_slab)
      
      GLODAP_basin_era_slab <- GLODAP_basin_era %>%
        filter(gamma_slab == i_gamma_slab)
      
      # number of observations used for each fitting model
      i_nr_obs = nrow(GLODAP_basin_era_slab)
      
      for (i_predictors in unique(lm_all$predictors)) {
        #i_predictors <- unique(lm_all$predictors)[1]
        
        # extract one model definition
        i_lm <- lm_all %>%
          filter(predictors == i_predictors) %>%
          select(lm_coeff) %>%
          pull()
        
        # extract number of predictors
        i_n_predictors <- lm_all %>%
          filter(predictors == i_predictors) %>%
          select(n) %>%
          pull()
        
        if (i_nr_obs > i_n_predictors) {
          # fit model
          if (params_local$MLR_type == "rlm") {
            i_lm_fit <- MASS::rlm(as.formula(i_lm),
                                  data = GLODAP_basin_era_slab)
          }
          
          if (params_local$MLR_type == "lm") {
            i_lm_fit <- lm(as.formula(i_lm),
                           data = GLODAP_basin_era_slab)
          }
          
          # find max predictor correlation
          i_cor_max <- GLODAP_basin_era_slab %>%
            select(!!!syms(str_split(i_predictors, " ",
                                     simplify = TRUE))) %>%
            correlate(quiet = TRUE) %>%
            select(-term) %>%
            abs() %>%
            max(na.rm = TRUE)
          
          # calculate root mean squared error
          i_rmse <- sqrt(c(crossprod(i_lm_fit$residuals)) /
                           length(i_lm_fit$residuals))
          
          # calculate maximum residual
          i_resid_max <- max(abs(i_lm_fit$residuals))
          
          # calculate Akaike information criterion aic
          i_aic <- AIC(i_lm_fit)
          
          # collect model coefficients and diagnostics
          coefficients <- tidy(i_lm_fit)
          
          coefficients <- coefficients %>%
            mutate(
              basin = i_basin,
              era = i_era,
              gamma_slab = i_gamma_slab,
              model = i_lm,
              nr_obs = i_nr_obs,
              rmse = i_rmse,
              aic = i_aic,
              resid_max = i_resid_max,
              n_predictors = i_n_predictors,
              na_predictor = anyNA(coefficients$estimate),
              cor_max = i_cor_max
            )
          
          if (exists("lm_all_fitted")) {
            lm_all_fitted <- bind_rows(lm_all_fitted, coefficients)
          }
          
          if (!exists("lm_all_fitted")) {
            lm_all_fitted <- coefficients
          }
        }
      }
    }
  }
}

rm(
  i_lm_fit,
  coefficients,
  i_rmse,
  GLODAP_basin_era,
  GLODAP_basin_era_slab,
  i_lm,
  i_basin,
  i_era,
  i_gamma_slab,
  i_nr_obs,
  i_predictors,
  i_aic,
  i_n_predictors,
  i_resid_max
)

5 Prepare coeffcients

Coefficients are prepared for the mapping of Cant and the chosen target variable.

5.1 Formatting

# select relevant columns
lm_all_fitted <- lm_all_fitted %>%
  select(
    basin,
    gamma_slab,
    era,
    model,
    nr_obs,
    n_predictors,
    term,
    estimate,
    rmse,
    aic,
    resid_max,
    na_predictor,
    cor_max
  )

# set coefficient to zero if not fitted (=NA)
lm_all_fitted <- lm_all_fitted %>%
  mutate(estimate = if_else(is.na(estimate), 0, estimate))

# Prepare model coefficients for mapping of target variable
lm_all_fitted_wide <- lm_all_fitted %>%
  pivot_wider(
    values_from = estimate,
    names_from = term,
    names_prefix = "coeff_",
    values_fill = 0
  )

5.2 Predictor selection

Within each basin and slab, the following number of best linear regression models was selected:

  • 5

The criterion used to select the best models was:

  • aic

The criterion was summed up for two adjacent eras, and the models with lowest summed values were selected.

Please note, that currently the lm() function produces NAs for some predictors. It is not yet entirely clear when this happens, but presumably it is caused by some form of collinearity between predictors, such that including another predictor does not help to explain the target variable any better. The issues also expresses as exactly identical rmse values of different models. As an interim solution, models with fitted NA predictors were not included.

# remove models with predictors fitted as NA

lm_all_fitted_wide <- lm_all_fitted_wide %>%
  filter(na_predictor == FALSE)
# calculate RMSE sum for adjacent eras
lm_all_fitted_wide_eras <- lm_all_fitted_wide  %>%
  select(basin, gamma_slab, model, era, nr_obs, rmse, aic, resid_max) %>%
  arrange(era) %>%
  group_by(basin, gamma_slab, model) %>%
  mutate(
    eras = paste(lag(era), era, sep = " --> "),
    rmse_sum = rmse + lag(rmse),
    aic_sum = aic + lag(aic)
  ) %>%
  ungroup() %>%
  select(-c(era)) %>%
  drop_na()

# subset models with lowest summed criterion
# chose which criterion is applied

if (params_local$MLR_criterion == "aic") {
  lm_best <- lm_all_fitted_wide_eras %>%
    group_by(basin, gamma_slab, eras) %>%
    slice_min(order_by = aic_sum,
              with_ties = FALSE,
              n = params_local$MLR_number) %>%
    ungroup() %>%
    arrange(basin, gamma_slab, eras, model)
} else {
  lm_best <- lm_all_fitted_wide_eras %>%
    group_by(basin, gamma_slab, eras) %>%
    slice_min(order_by = rmse_sum,
              with_ties = FALSE,
              n = params_local$MLR_number) %>%
    ungroup() %>%
    arrange(basin, gamma_slab, eras, model)
}

5.3 RMSE tables

5.3.1 per model

lm_best %>%
  kable() %>%
  add_header_above() %>%
  kable_styling() %>%
  scroll_box(width = "100%", height = "400px")
basin gamma_slab model nr_obs rmse aic resid_max eras rmse_sum aic_sum
Atlantic (-Inf,26] cstar_tref ~ sal + aou + nitrate + phosphate_star 110 1.5828856 425.2014 6.118695 1982-1999 –> 2000-2008 3.2725872 1245.6934
Atlantic (-Inf,26] cstar_tref ~ sal + aou + phosphate + phosphate_star 110 1.0603826 337.0650 3.928445 1982-1999 –> 2000-2008 2.3967310 1059.9588
Atlantic (-Inf,26] cstar_tref ~ sal + aou + silicate + phosphate + phosphate_star 110 1.0603443 339.0571 3.915891 1982-1999 –> 2000-2008 2.3960368 1063.7467
Atlantic (-Inf,26] cstar_tref ~ temp + aou + phosphate + phosphate_star 110 1.4642866 408.0675 6.241851 1982-1999 –> 2000-2008 3.1265567 1221.7505
Atlantic (-Inf,26] cstar_tref ~ temp + aou + silicate + phosphate + phosphate_star 110 1.4500076 407.9116 5.857137 1982-1999 –> 2000-2008 3.1114961 1223.3990
Atlantic (-Inf,26] cstar_tref ~ sal + aou + phosphate + phosphate_star 120 1.1639689 388.9858 3.443761 2000-2008 –> 2009-2019 2.2243515 726.0508
Atlantic (-Inf,26] cstar_tref ~ sal + aou + silicate + phosphate + phosphate_star 120 1.1032974 378.1381 3.121374 2000-2008 –> 2009-2019 2.1636418 717.1951
Atlantic (-Inf,26] cstar_tref ~ sal + aou + silicate + phosphate_star 120 1.6504991 472.8039 4.220872 2000-2008 –> 2009-2019 3.2269102 897.1036
Atlantic (-Inf,26] cstar_tref ~ temp + aou + phosphate + phosphate_star 120 1.5135931 452.0220 6.318368 2000-2008 –> 2009-2019 2.9778797 860.0894
Atlantic (-Inf,26] cstar_tref ~ temp + aou + silicate + phosphate + phosphate_star 120 1.4696627 446.9532 5.722394 2000-2008 –> 2009-2019 2.9196703 854.8648
Atlantic (26,26.5] cstar_tref ~ sal + aou + silicate + phosphate + phosphate_star 726 3.5639121 3919.5858 13.498559 1982-1999 –> 2000-2008 7.0106570 12035.5107
Atlantic (26,26.5] cstar_tref ~ temp + aou + nitrate + phosphate_star 726 4.2320872 4167.0923 10.513592 1982-1999 –> 2000-2008 8.3905003 12853.5121
Atlantic (26,26.5] cstar_tref ~ temp + aou + nitrate + silicate 726 4.0421862 4100.4316 12.239560 1982-1999 –> 2000-2008 8.1265625 12732.0596
Atlantic (26,26.5] cstar_tref ~ temp + aou + nitrate + silicate + phosphate_star 726 4.0305485 4098.2451 12.838926 1982-1999 –> 2000-2008 8.1122044 12729.8411
Atlantic (26,26.5] cstar_tref ~ temp + aou + silicate + phosphate + phosphate_star 726 4.3194413 4198.7578 13.094755 1982-1999 –> 2000-2008 8.5545406 12942.9110
Atlantic (26,26.5] cstar_tref ~ sal + aou + silicate + phosphate + phosphate_star 887 3.5766351 4792.0224 11.509131 2000-2008 –> 2009-2019 7.1405472 8711.6082
Atlantic (26,26.5] cstar_tref ~ temp + aou + nitrate + phosphate_star 887 4.1181347 5040.1171 12.061754 2000-2008 –> 2009-2019 8.3502219 9207.2095
Atlantic (26,26.5] cstar_tref ~ temp + aou + nitrate + silicate 887 3.9565691 4969.1162 16.433540 2000-2008 –> 2009-2019 7.9987553 9069.5478
Atlantic (26,26.5] cstar_tref ~ temp + aou + nitrate + silicate + phosphate_star 887 3.9408963 4964.0751 18.038103 2000-2008 –> 2009-2019 7.9714448 9062.3202
Atlantic (26,26.5] cstar_tref ~ temp + aou + silicate + phosphate + phosphate_star 887 4.2298592 5089.6042 11.623373 2000-2008 –> 2009-2019 8.5493005 9288.3620
Atlantic (26.5,26.75] cstar_tref ~ aou + silicate + phosphate + phosphate_star 965 3.1511176 4965.7227 10.227600 1982-1999 –> 2000-2008 6.2497311 14652.0178
Atlantic (26.5,26.75] cstar_tref ~ sal + aou + silicate + phosphate 965 3.2075368 4999.9727 9.941595 1982-1999 –> 2000-2008 6.3544848 14744.9927
Atlantic (26.5,26.75] cstar_tref ~ sal + aou + silicate + phosphate + phosphate_star 965 3.1000501 4936.1886 10.294776 1982-1999 –> 2000-2008 6.1592002 14575.8537
Atlantic (26.5,26.75] cstar_tref ~ temp + aou + nitrate + silicate + phosphate_star 965 3.1717239 4980.3026 9.984350 1982-1999 –> 2000-2008 6.3164669 14724.6632
Atlantic (26.5,26.75] cstar_tref ~ temp + aou + silicate + phosphate + phosphate_star 965 3.0448187 4901.4932 9.419208 1982-1999 –> 2000-2008 6.0278524 14445.5633
Atlantic (26.5,26.75] cstar_tref ~ aou + silicate + phosphate + phosphate_star 1088 3.6028024 5888.6155 11.507716 2000-2008 –> 2009-2019 6.7539200 10854.3382
Atlantic (26.5,26.75] cstar_tref ~ sal + aou + silicate + phosphate 1088 3.5167576 5836.0161 11.179635 2000-2008 –> 2009-2019 6.7242944 10835.9888
Atlantic (26.5,26.75] cstar_tref ~ sal + aou + silicate + phosphate + phosphate_star 1088 3.4970317 5825.7763 11.382695 2000-2008 –> 2009-2019 6.5970818 10761.9649
Atlantic (26.5,26.75] cstar_tref ~ temp + aou + nitrate + silicate + phosphate_star 1088 3.5173399 5838.3763 9.303961 2000-2008 –> 2009-2019 6.6890638 10818.6790
Atlantic (26.5,26.75] cstar_tref ~ temp + aou + silicate + phosphate + phosphate_star 1088 3.4808595 5815.6899 10.801616 2000-2008 –> 2009-2019 6.5256783 10717.1831
Atlantic (26.75,27] cstar_tref ~ aou + silicate + phosphate + phosphate_star 1657 2.0639034 7115.6835 14.125744 1982-1999 –> 2000-2008 3.7364407 19268.6843
Atlantic (26.75,27] cstar_tref ~ sal + aou + silicate + phosphate + phosphate_star 1657 1.9677382 6959.5584 13.449850 1982-1999 –> 2000-2008 3.6207272 19040.7271
Atlantic (26.75,27] cstar_tref ~ temp + aou + nitrate + silicate + phosphate_star 1657 2.1735515 7289.2275 15.480311 1982-1999 –> 2000-2008 3.9692177 19890.3232
Atlantic (26.75,27] cstar_tref ~ temp + aou + silicate + phosphate 1657 2.1677049 7278.3012 14.596637 1982-1999 –> 2000-2008 3.9552964 19849.0936
Atlantic (26.75,27] cstar_tref ~ temp + aou + silicate + phosphate + phosphate_star 1657 2.0627635 7115.8527 14.751576 1982-1999 –> 2000-2008 3.5762127 18643.1640
Atlantic (26.75,27] cstar_tref ~ aou + silicate + phosphate + phosphate_star 2004 2.4497762 9290.2603 27.463653 2000-2008 –> 2009-2019 4.5136796 16405.9438
Atlantic (26.75,27] cstar_tref ~ sal + aou + silicate + phosphate 2004 2.4126150 9228.9963 24.703523 2000-2008 –> 2009-2019 4.5882586 16519.4121
Atlantic (26.75,27] cstar_tref ~ sal + aou + silicate + phosphate + phosphate_star 2004 2.3482362 9122.5930 25.940225 2000-2008 –> 2009-2019 4.3159744 16082.1514
Atlantic (26.75,27] cstar_tref ~ temp + aou + nitrate + silicate + phosphate_star 2004 2.5042136 9380.3485 23.426544 2000-2008 –> 2009-2019 4.6777651 16669.5760
Atlantic (26.75,27] cstar_tref ~ temp + aou + silicate + phosphate + phosphate_star 2004 2.1044039 8683.1870 22.765287 2000-2008 –> 2009-2019 4.1671674 15799.0396
Atlantic (27,27.25] cstar_tref ~ sal + aou + nitrate + silicate + phosphate_star 1403 2.0537007 6014.8608 9.421835 1982-1999 –> 2000-2008 4.2879821 17636.6263
Atlantic (27,27.25] cstar_tref ~ sal + aou + silicate + phosphate 1403 1.8593301 5733.8684 9.146139 1982-1999 –> 2000-2008 3.5757053 15976.5660
Atlantic (27,27.25] cstar_tref ~ sal + aou + silicate + phosphate + phosphate_star 1403 1.8318571 5694.0982 9.660601 1982-1999 –> 2000-2008 3.4018426 15473.2641
Atlantic (27,27.25] cstar_tref ~ temp + aou + nitrate + silicate + phosphate_star 1403 2.0001436 5940.7140 13.323132 1982-1999 –> 2000-2008 3.6767223 16062.9069
Atlantic (27,27.25] cstar_tref ~ temp + aou + silicate + phosphate + phosphate_star 1403 2.2298791 6245.8059 14.287388 1982-1999 –> 2000-2008 4.3063013 17484.9379
Atlantic (27,27.25] cstar_tref ~ sal + aou + nitrate + silicate + phosphate_star 1770 2.1957025 7821.2597 11.870716 2000-2008 –> 2009-2019 4.2494032 13836.1205
Atlantic (27,27.25] cstar_tref ~ sal + aou + silicate + phosphate 1770 2.1848856 7801.7771 13.569860 2000-2008 –> 2009-2019 4.0442157 13535.6455
Atlantic (27,27.25] cstar_tref ~ sal + aou + silicate + phosphate + phosphate_star 1770 2.1848757 7803.7610 13.557213 2000-2008 –> 2009-2019 4.0167327 13497.8592
Atlantic (27,27.25] cstar_tref ~ sal + aou + silicate + phosphate_star 1770 2.2804983 7953.3970 14.908620 2000-2008 –> 2009-2019 4.3742676 14020.4770
Atlantic (27,27.25] cstar_tref ~ temp + aou + nitrate + silicate + phosphate_star 1770 2.3928360 8125.6190 19.363213 2000-2008 –> 2009-2019 4.3929796 14066.3330
Atlantic (27.25,27.5] cstar_tref ~ sal + aou + nitrate + silicate 1432 2.4907687 6689.5017 12.826044 1982-1999 –> 2000-2008 5.1072729 20405.2580
Atlantic (27.25,27.5] cstar_tref ~ sal + aou + nitrate + silicate + phosphate_star 1432 2.4077228 6594.3836 12.290135 1982-1999 –> 2000-2008 4.9426914 20129.9170
Atlantic (27.25,27.5] cstar_tref ~ sal + aou + silicate + phosphate + phosphate_star 1432 2.5668051 6777.6239 20.256556 1982-1999 –> 2000-2008 4.7338531 19410.5281
Atlantic (27.25,27.5] cstar_tref ~ temp + aou + nitrate + silicate 1432 2.2302104 6373.0427 11.116059 1982-1999 –> 2000-2008 3.9502899 17674.3375
Atlantic (27.25,27.5] cstar_tref ~ temp + aou + nitrate + silicate + phosphate_star 1432 2.1206350 6230.7534 14.412780 1982-1999 –> 2000-2008 3.8365337 17520.0406
Atlantic (27.25,27.5] cstar_tref ~ aou + nitrate + silicate + phosphate_star 1702 2.9549498 8530.2384 21.650262 2000-2008 –> 2009-2019 5.6584972 15454.5117
Atlantic (27.25,27.5] cstar_tref ~ sal + aou + nitrate + silicate 1702 2.8677604 8428.2875 16.040376 2000-2008 –> 2009-2019 5.3585291 15117.7892
Atlantic (27.25,27.5] cstar_tref ~ sal + aou + nitrate + silicate + phosphate_star 1702 2.7136930 8242.3155 17.246937 2000-2008 –> 2009-2019 5.1214158 14836.6991
Atlantic (27.25,27.5] cstar_tref ~ temp + aou + nitrate + silicate 1702 3.0012510 8583.1622 11.700791 2000-2008 –> 2009-2019 5.2314614 14956.2049
Atlantic (27.25,27.5] cstar_tref ~ temp + aou + nitrate + silicate + phosphate_star 1702 2.7021751 8227.8369 17.252150 2000-2008 –> 2009-2019 4.8228101 14458.5903
Atlantic (27.5,27.75] cstar_tref ~ sal + aou + phosphate 1979 2.7318315 9603.8390 13.412723 1982-1999 –> 2000-2008 5.2068813 26978.4255
Atlantic (27.5,27.75] cstar_tref ~ sal + aou + phosphate + phosphate_star 1979 2.7065774 9569.0795 13.943817 1982-1999 –> 2000-2008 4.9724453 26286.2217
Atlantic (27.5,27.75] cstar_tref ~ sal + aou + silicate + phosphate 1979 2.4346321 9149.9698 13.506431 1982-1999 –> 2000-2008 4.8018169 26193.7891
Atlantic (27.5,27.75] cstar_tref ~ sal + aou + silicate + phosphate + phosphate_star 1979 2.3627628 9033.3723 14.367622 1982-1999 –> 2000-2008 4.4633308 25186.8128
Atlantic (27.5,27.75] cstar_tref ~ temp + aou + nitrate + silicate + phosphate_star 1979 2.9949305 9971.7722 15.808719 1982-1999 –> 2000-2008 5.3810915 27077.2186
Atlantic (27.5,27.75] cstar_tref ~ sal + aou + nitrate + silicate 2340 3.1460588 12016.6166 16.554630 2000-2008 –> 2009-2019 5.9266722 21692.5094
Atlantic (27.5,27.75] cstar_tref ~ sal + aou + nitrate + silicate + phosphate_star 2340 3.1208758 11981.0043 15.244357 2000-2008 –> 2009-2019 5.8915958 21644.7894
Atlantic (27.5,27.75] cstar_tref ~ sal + aou + phosphate + phosphate_star 2340 3.2193457 12124.3861 13.894909 2000-2008 –> 2009-2019 5.9259231 21693.4656
Atlantic (27.5,27.75] cstar_tref ~ sal + aou + silicate + phosphate 2340 2.7289817 11351.0180 14.950042 2000-2008 –> 2009-2019 5.1636138 20500.9878
Atlantic (27.5,27.75] cstar_tref ~ sal + aou + silicate + phosphate + phosphate_star 2340 2.7164500 11331.4775 14.798604 2000-2008 –> 2009-2019 5.0792128 20364.8498
Atlantic (27.75,27.85] cstar_tref ~ sal + aou + nitrate + silicate 688 1.8822594 2834.7420 13.350662 1982-1999 –> 2000-2008 3.8869076 8428.7769
Atlantic (27.75,27.85] cstar_tref ~ sal + aou + nitrate + silicate + phosphate_star 688 1.8187205 2789.4907 14.229361 1982-1999 –> 2000-2008 3.7703681 8314.7877
Atlantic (27.75,27.85] cstar_tref ~ sal + aou + phosphate + phosphate_star 688 1.8530923 2813.2529 12.537840 1982-1999 –> 2000-2008 3.5363892 7946.0421
Atlantic (27.75,27.85] cstar_tref ~ sal + aou + silicate + phosphate 688 1.6885881 2685.3358 12.338165 1982-1999 –> 2000-2008 3.4972653 8007.7864
Atlantic (27.75,27.85] cstar_tref ~ sal + aou + silicate + phosphate + phosphate_star 688 1.4850215 2510.5701 12.906742 1982-1999 –> 2000-2008 3.0820664 7506.4970
Atlantic (27.75,27.85] cstar_tref ~ sal + aou + nitrate + silicate 861 2.0091785 3656.8962 12.547977 2000-2008 –> 2009-2019 3.8914378 6491.6382
Atlantic (27.75,27.85] cstar_tref ~ sal + aou + nitrate + silicate + phosphate_star 861 1.9932243 3645.1678 12.962072 2000-2008 –> 2009-2019 3.8119448 6434.6585
Atlantic (27.75,27.85] cstar_tref ~ sal + aou + phosphate + phosphate_star 861 2.3474123 3924.8181 11.404366 2000-2008 –> 2009-2019 4.2005046 6738.0710
Atlantic (27.75,27.85] cstar_tref ~ sal + aou + silicate + phosphate 861 1.8364097 3502.0651 11.597744 2000-2008 –> 2009-2019 3.5249977 6187.4009
Atlantic (27.75,27.85] cstar_tref ~ sal + aou + silicate + phosphate + phosphate_star 861 1.7164355 3387.7222 11.994150 2000-2008 –> 2009-2019 3.2014570 5898.2923
Atlantic (27.85,27.95] cstar_tref ~ aou + silicate + phosphate + phosphate_star 659 3.2692448 3443.4097 31.189168 1982-1999 –> 2000-2008 6.1468429 10070.9998
Atlantic (27.85,27.95] cstar_tref ~ sal + aou + phosphate + phosphate_star 659 3.2412466 3432.0737 24.556990 1982-1999 –> 2000-2008 5.9712539 9918.9784
Atlantic (27.85,27.95] cstar_tref ~ sal + aou + silicate + phosphate + phosphate_star 659 3.2312069 3429.9848 22.832095 1982-1999 –> 2000-2008 5.9610850 9918.7632
Atlantic (27.85,27.95] cstar_tref ~ temp + aou + phosphate + phosphate_star 659 2.8864969 3279.2985 21.562532 1982-1999 –> 2000-2008 5.8033025 9943.0490
Atlantic (27.85,27.95] cstar_tref ~ temp + aou + silicate + phosphate + phosphate_star 659 2.8805779 3278.5930 21.426742 1982-1999 –> 2000-2008 5.7448332 9895.7649
Atlantic (27.85,27.95] cstar_tref ~ aou + silicate + phosphate + phosphate_star 893 3.6388755 4853.1553 24.564776 2000-2008 –> 2009-2019 6.9081203 8296.5650
Atlantic (27.85,27.95] cstar_tref ~ sal + aou + phosphate + phosphate_star 893 3.2764028 4665.7528 31.808520 2000-2008 –> 2009-2019 6.5176494 8097.8264
Atlantic (27.85,27.95] cstar_tref ~ sal + aou + silicate + phosphate + phosphate_star 893 3.2010827 4626.2158 30.563544 2000-2008 –> 2009-2019 6.4322896 8056.2006
Atlantic (27.85,27.95] cstar_tref ~ temp + aou + phosphate + phosphate_star 893 3.5763422 4822.1964 23.280568 2000-2008 –> 2009-2019 6.4628391 8101.4949
Atlantic (27.85,27.95] cstar_tref ~ temp + aou + silicate + phosphate + phosphate_star 893 3.5520614 4812.0294 24.376118 2000-2008 –> 2009-2019 6.4326393 8090.6225
Atlantic (27.95,28.05] cstar_tref ~ sal + aou + phosphate + phosphate_star 818 4.7047102 4866.8344 26.101591 1982-1999 –> 2000-2008 9.5365696 14915.2919
Atlantic (27.95,28.05] cstar_tref ~ sal + aou + silicate + phosphate + phosphate_star 818 4.6216768 4839.7028 25.161279 1982-1999 –> 2000-2008 9.3669537 14829.5509
Atlantic (27.95,28.05] cstar_tref ~ temp + aou + nitrate + phosphate_star 818 4.1997782 4681.0953 22.430457 1982-1999 –> 2000-2008 8.2305079 14121.8891
Atlantic (27.95,28.05] cstar_tref ~ temp + aou + nitrate + silicate + phosphate_star 818 4.0418371 4620.3835 23.852350 1982-1999 –> 2000-2008 7.5736465 13620.2536
Atlantic (27.95,28.05] cstar_tref ~ temp + aou + silicate + phosphate + phosphate_star 818 4.5670350 4820.2453 21.600448 1982-1999 –> 2000-2008 9.4214040 14886.2821
Atlantic (27.95,28.05] cstar_tref ~ sal + aou + phosphate + phosphate_star 1052 4.3783749 6104.3764 24.778686 2000-2008 –> 2009-2019 9.0830851 10971.2108
Atlantic (27.95,28.05] cstar_tref ~ sal + aou + silicate + phosphate + phosphate_star 1052 4.3189470 6077.6231 24.715518 2000-2008 –> 2009-2019 8.9406238 10917.3260
Atlantic (27.95,28.05] cstar_tref ~ temp + aou + nitrate + phosphate_star 1052 3.8344411 5825.2725 22.665961 2000-2008 –> 2009-2019 8.0342193 10506.3678
Atlantic (27.95,28.05] cstar_tref ~ temp + aou + nitrate + silicate + phosphate_star 1052 3.4529907 5606.8092 27.139851 2000-2008 –> 2009-2019 7.4948278 10227.1927
Atlantic (27.95,28.05] cstar_tref ~ temp + aou + silicate + phosphate + phosphate_star 1052 4.4232551 6127.8335 23.229057 2000-2008 –> 2009-2019 8.9902901 10948.0788
Atlantic (28.05,28.1] cstar_tref ~ aou + silicate + phosphate + phosphate_star 565 1.1868409 1808.9639 9.898592 1982-1999 –> 2000-2008 2.1399091 4771.0756
Atlantic (28.05,28.1] cstar_tref ~ sal + aou + phosphate + phosphate_star 565 1.0497520 1670.2665 6.601232 1982-1999 –> 2000-2008 1.9426413 4492.0165
Atlantic (28.05,28.1] cstar_tref ~ sal + aou + silicate + phosphate + phosphate_star 565 1.0102726 1628.9493 5.552406 1982-1999 –> 2000-2008 1.9026282 4451.4127
Atlantic (28.05,28.1] cstar_tref ~ temp + aou + phosphate + phosphate_star 565 1.1387134 1762.1865 10.155131 1982-1999 –> 2000-2008 2.0795224 4696.4376
Atlantic (28.05,28.1] cstar_tref ~ temp + aou + silicate + phosphate + phosphate_star 565 1.0871626 1711.8360 10.964604 1982-1999 –> 2000-2008 1.9264395 4402.3298
Atlantic (28.05,28.1] cstar_tref ~ sal + aou + nitrate + silicate + phosphate_star 673 1.1480158 2109.6865 8.049134 2000-2008 –> 2009-2019 2.2560949 3843.0566
Atlantic (28.05,28.1] cstar_tref ~ sal + aou + phosphate + phosphate_star 673 1.0731011 2016.8552 9.691677 2000-2008 –> 2009-2019 2.1228531 3687.1217
Atlantic (28.05,28.1] cstar_tref ~ sal + aou + silicate + phosphate + phosphate_star 673 1.0390706 1975.4790 8.643193 2000-2008 –> 2009-2019 2.0493432 3604.4283
Atlantic (28.05,28.1] cstar_tref ~ temp + aou + phosphate + phosphate_star 673 1.0632974 2004.5018 13.201907 2000-2008 –> 2009-2019 2.2020109 3766.6883
Atlantic (28.05,28.1] cstar_tref ~ temp + aou + silicate + phosphate + phosphate_star 673 1.0029755 1927.8904 13.995196 2000-2008 –> 2009-2019 2.0901381 3639.7263
Atlantic (28.1,28.15] cstar_tref ~ aou + silicate + phosphate + phosphate_star 663 0.8738857 1714.7601 8.841534 1982-1999 –> 2000-2008 1.5587943 4421.5741
Atlantic (28.1,28.15] cstar_tref ~ sal + aou + nitrate + silicate + phosphate_star 663 0.8421206 1667.6632 5.498270 1982-1999 –> 2000-2008 1.5504168 4463.4412
Atlantic (28.1,28.15] cstar_tref ~ sal + aou + phosphate + phosphate_star 663 0.7666921 1541.2340 5.064981 1982-1999 –> 2000-2008 1.4385674 4198.2872
Atlantic (28.1,28.15] cstar_tref ~ sal + aou + silicate + phosphate + phosphate_star 663 0.7487168 1511.7754 4.939418 1982-1999 –> 2000-2008 1.3781696 4001.9040
Atlantic (28.1,28.15] cstar_tref ~ temp + aou + silicate + phosphate + phosphate_star 663 0.7991257 1598.1742 8.836000 1982-1999 –> 2000-2008 1.3879154 3915.3379
Atlantic (28.1,28.15] cstar_tref ~ sal + aou + nitrate + silicate + phosphate_star 770 0.8961317 2030.2768 7.973080 2000-2008 –> 2009-2019 1.7382523 3697.9400
Atlantic (28.1,28.15] cstar_tref ~ sal + aou + phosphate + phosphate_star 770 0.8166830 1885.3088 7.028213 2000-2008 –> 2009-2019 1.5833751 3426.5429
Atlantic (28.1,28.15] cstar_tref ~ sal + aou + silicate + phosphate + phosphate_star 770 0.8154600 1885.0009 7.017951 2000-2008 –> 2009-2019 1.5641768 3396.7763
Atlantic (28.1,28.15] cstar_tref ~ temp + aou + phosphate + phosphate_star 770 0.8766659 1994.4562 11.848627 2000-2008 –> 2009-2019 1.7498948 3708.2194
Atlantic (28.1,28.15] cstar_tref ~ temp + aou + silicate + phosphate + phosphate_star 770 0.7933963 1842.7593 12.250467 2000-2008 –> 2009-2019 1.5925220 3440.9335
Atlantic (28.15,28.2] cstar_tref ~ sal + aou + nitrate + phosphate_star 1061 0.5794269 1864.9786 1.969688 1982-1999 –> 2000-2008 1.1121633 5387.3849
Atlantic (28.15,28.2] cstar_tref ~ sal + aou + nitrate + silicate + phosphate_star 1061 0.5341524 1694.3364 1.999332 1982-1999 –> 2000-2008 1.0518513 5091.3826
Atlantic (28.15,28.2] cstar_tref ~ temp + aou + nitrate + phosphate_star 1061 0.5822300 1875.2196 2.120487 1982-1999 –> 2000-2008 1.1460192 5649.6210
Atlantic (28.15,28.2] cstar_tref ~ temp + aou + nitrate + silicate 1061 0.5540176 1769.8217 2.133061 1982-1999 –> 2000-2008 1.1046685 5439.3422
Atlantic (28.15,28.2] cstar_tref ~ temp + aou + nitrate + silicate + phosphate_star 1061 0.5427548 1728.2384 2.247413 1982-1999 –> 2000-2008 1.0928040 5394.8958
Atlantic (28.15,28.2] cstar_tref ~ sal + aou + nitrate + phosphate_star 1298 0.7148302 2824.0606 5.571969 2000-2008 –> 2009-2019 1.2942571 4689.0393
Atlantic (28.15,28.2] cstar_tref ~ sal + aou + nitrate + silicate + phosphate_star 1298 0.7054925 2791.9262 6.356481 2000-2008 –> 2009-2019 1.2396450 4486.2627
Atlantic (28.15,28.2] cstar_tref ~ temp + aou + nitrate + phosphate_star 1298 0.8189368 3177.0178 9.752451 2000-2008 –> 2009-2019 1.4011668 5052.2374
Atlantic (28.15,28.2] cstar_tref ~ temp + aou + nitrate + silicate 1298 0.8075260 3140.5916 10.459046 2000-2008 –> 2009-2019 1.3615436 4910.4133
Atlantic (28.15,28.2] cstar_tref ~ temp + aou + nitrate + silicate + phosphate_star 1298 0.8075158 3142.5587 10.484177 2000-2008 –> 2009-2019 1.3502706 4870.7971
Atlantic (28.2, Inf] cstar_tref ~ sal + aou + nitrate 1894 0.3478881 1385.2869 1.901627 1982-1999 –> 2000-2008 0.6541565 3144.2453
Atlantic (28.2, Inf] cstar_tref ~ sal + aou + nitrate + phosphate_star 1894 0.3436789 1341.1751 1.880270 1982-1999 –> 2000-2008 0.6456295 2996.7524
Atlantic (28.2, Inf] cstar_tref ~ sal + aou + nitrate + silicate 1894 0.3477023 1385.2635 1.900515 1982-1999 –> 2000-2008 0.6524897 3110.2447
Atlantic (28.2, Inf] cstar_tref ~ sal + aou + nitrate + silicate + phosphate_star 1894 0.3356062 1253.1367 1.842246 1982-1999 –> 2000-2008 0.6346935 2839.9984
Atlantic (28.2, Inf] cstar_tref ~ temp + aou + nitrate + silicate + phosphate_star 1894 0.5035510 2790.1052 2.925171 1982-1999 –> 2000-2008 0.9625571 7556.0165
Atlantic (28.2, Inf] cstar_tref ~ sal + aou + nitrate 2356 0.4048932 2435.7681 2.383068 2000-2008 –> 2009-2019 0.7527813 3821.0550
Atlantic (28.2, Inf] cstar_tref ~ sal + aou + nitrate + phosphate_star 2356 0.3912592 2276.3681 2.329236 2000-2008 –> 2009-2019 0.7349381 3617.5433
Atlantic (28.2, Inf] cstar_tref ~ sal + aou + nitrate + silicate 2356 0.4002060 2382.9022 2.376657 2000-2008 –> 2009-2019 0.7479083 3768.1657
Atlantic (28.2, Inf] cstar_tref ~ sal + aou + nitrate + silicate + phosphate_star 2356 0.3839474 2189.4776 2.545602 2000-2008 –> 2009-2019 0.7195536 3442.6143
Atlantic (28.2, Inf] cstar_tref ~ temp + aou + nitrate + silicate + phosphate_star 2356 0.6695335 4809.7061 10.072546 2000-2008 –> 2009-2019 1.1730845 7599.8113
Indo-Pacific (-Inf,26] cstar_tref ~ sal + aou + phosphate + phosphate_star 3645 6.2800447 23750.5409 30.230794 1982-1999 –> 2000-2008 12.8095859 71168.3703
Indo-Pacific (-Inf,26] cstar_tref ~ sal + aou + silicate + phosphate + phosphate_star 3645 6.2366403 23701.9814 29.760266 1982-1999 –> 2000-2008 12.7154916 71009.6939
Indo-Pacific (-Inf,26] cstar_tref ~ temp + aou + nitrate + silicate + phosphate_star 3645 7.2084570 24757.6702 31.572854 1982-1999 –> 2000-2008 14.7368140 74225.2048
Indo-Pacific (-Inf,26] cstar_tref ~ temp + aou + silicate + phosphate + phosphate_star 3645 7.2998380 24849.5041 29.330385 1982-1999 –> 2000-2008 14.8840176 74423.3171
Indo-Pacific (-Inf,26] cstar_tref ~ temp + silicate + phosphate + phosphate_star 3645 7.4017617 24948.5864 28.658407 1982-1999 –> 2000-2008 15.1160648 74765.1296
Indo-Pacific (-Inf,26] cstar_tref ~ sal + aou + phosphate + phosphate_star 4459 6.0310286 28691.0048 24.778598 2000-2008 –> 2009-2019 12.3110733 52441.5457
Indo-Pacific (-Inf,26] cstar_tref ~ sal + aou + silicate + phosphate + phosphate_star 4459 5.9692539 28601.1884 24.098032 2000-2008 –> 2009-2019 12.2058942 52303.1697
Indo-Pacific (-Inf,26] cstar_tref ~ temp + aou + nitrate + silicate + phosphate_star 4459 7.0467156 30081.0385 25.923585 2000-2008 –> 2009-2019 14.2551726 54838.7088
Indo-Pacific (-Inf,26] cstar_tref ~ temp + aou + silicate + phosphate + phosphate_star 4459 7.1134116 30165.0489 25.398300 2000-2008 –> 2009-2019 14.4132496 55014.5531
Indo-Pacific (-Inf,26] cstar_tref ~ temp + silicate + phosphate + phosphate_star 4459 7.2315127 30309.8953 24.429455 2000-2008 –> 2009-2019 14.6332744 55258.4817
Indo-Pacific (26,26.5] cstar_tref ~ aou + silicate + phosphate + phosphate_star 3829 4.8018565 22893.6533 41.112188 1982-1999 –> 2000-2008 9.4490406 68486.6582
Indo-Pacific (26,26.5] cstar_tref ~ sal + aou + silicate + phosphate + phosphate_star 3829 4.4591298 22328.5862 44.055448 1982-1999 –> 2000-2008 8.7055025 66532.4029
Indo-Pacific (26,26.5] cstar_tref ~ temp + aou + nitrate + silicate + phosphate_star 3829 4.6772167 22694.2524 48.793195 1982-1999 –> 2000-2008 9.0888586 67486.9851
Indo-Pacific (26,26.5] cstar_tref ~ temp + aou + silicate + phosphate 3829 4.8139267 22912.8787 39.342352 1982-1999 –> 2000-2008 9.4336871 68414.5945
Indo-Pacific (26,26.5] cstar_tref ~ temp + aou + silicate + phosphate + phosphate_star 3829 4.7961752 22886.5875 40.610595 1982-1999 –> 2000-2008 9.4158443 68389.9984
Indo-Pacific (26,26.5] cstar_tref ~ aou + silicate + phosphate + phosphate_star 4614 4.9091889 27788.7162 41.959096 2000-2008 –> 2009-2019 9.7110454 50682.3695
Indo-Pacific (26,26.5] cstar_tref ~ sal + aou + silicate + phosphate + phosphate_star 4614 4.5485519 27086.6215 45.085074 2000-2008 –> 2009-2019 9.0076817 49415.2077
Indo-Pacific (26,26.5] cstar_tref ~ temp + aou + nitrate + silicate + phosphate_star 4614 4.7038052 27396.3397 47.887037 2000-2008 –> 2009-2019 9.3810219 50090.5922
Indo-Pacific (26,26.5] cstar_tref ~ temp + aou + silicate + phosphate 4614 4.8959995 27763.8901 40.766362 2000-2008 –> 2009-2019 9.7099261 50676.7688
Indo-Pacific (26,26.5] cstar_tref ~ temp + aou + silicate + phosphate + phosphate_star 4614 4.8929016 27760.0494 41.227023 2000-2008 –> 2009-2019 9.6890768 50646.6369
Indo-Pacific (26.5,26.75] cstar_tref ~ aou + silicate + phosphate + phosphate_star 3155 3.9625071 17653.5955 20.911911 1982-1999 –> 2000-2008 7.9115745 52783.0441
Indo-Pacific (26.5,26.75] cstar_tref ~ sal + aou + phosphate + phosphate_star 3155 4.1522917 17948.7992 16.771288 1982-1999 –> 2000-2008 8.0864731 53030.7531
Indo-Pacific (26.5,26.75] cstar_tref ~ sal + aou + silicate + phosphate + phosphate_star 3155 3.8616436 17492.8983 18.914735 1982-1999 –> 2000-2008 7.6190382 51998.6450
Indo-Pacific (26.5,26.75] cstar_tref ~ temp + aou + nitrate + silicate + phosphate_star 3155 3.9611210 17653.3879 32.520264 1982-1999 –> 2000-2008 7.9520007 52917.2898
Indo-Pacific (26.5,26.75] cstar_tref ~ temp + aou + silicate + phosphate + phosphate_star 3155 3.8815654 17525.3672 19.148818 1982-1999 –> 2000-2008 7.7587575 52425.8166
Indo-Pacific (26.5,26.75] cstar_tref ~ aou + silicate + phosphate + phosphate_star 3836 4.3185308 22121.5823 25.159708 2000-2008 –> 2009-2019 8.2810379 39775.1779
Indo-Pacific (26.5,26.75] cstar_tref ~ sal + aou + silicate + phosphate + phosphate_star 3836 4.1788159 21871.2707 25.715301 2000-2008 –> 2009-2019 8.0404595 39364.1690
Indo-Pacific (26.5,26.75] cstar_tref ~ temp + aou + nitrate + silicate + phosphate_star 3836 4.2292460 21963.3024 33.372085 2000-2008 –> 2009-2019 8.1903669 39616.6903
Indo-Pacific (26.5,26.75] cstar_tref ~ temp + aou + silicate + phosphate + phosphate_star 3836 4.1844077 21881.5300 23.557925 2000-2008 –> 2009-2019 8.0659731 39406.8973
Indo-Pacific (26.5,26.75] cstar_tref ~ temp + nitrate + silicate + phosphate_star 3836 4.2320442 21966.3768 34.676735 2000-2008 –> 2009-2019 8.1933235 39618.0169
Indo-Pacific (26.75,27] cstar_tref ~ aou + silicate + phosphate + phosphate_star 3602 4.4276782 20952.6872 18.675688 1982-1999 –> 2000-2008 8.4246624 63205.7447
Indo-Pacific (26.75,27] cstar_tref ~ sal + aou + phosphate + phosphate_star 3602 4.1974239 20567.9622 21.823544 1982-1999 –> 2000-2008 7.8852310 61608.4061
Indo-Pacific (26.75,27] cstar_tref ~ sal + aou + silicate + phosphate + phosphate_star 3602 4.1830712 20545.2866 20.925760 1982-1999 –> 2000-2008 7.8569689 61530.8136
Indo-Pacific (26.75,27] cstar_tref ~ temp + aou + phosphate + phosphate_star 3602 4.0982507 20395.7091 20.585046 1982-1999 –> 2000-2008 7.7784464 61405.0342
Indo-Pacific (26.75,27] cstar_tref ~ temp + aou + silicate + phosphate + phosphate_star 3602 4.0663351 20341.3875 19.148134 1982-1999 –> 2000-2008 7.7187988 61238.7836
Indo-Pacific (26.75,27] cstar_tref ~ aou + silicate + phosphate + phosphate_star 4620 4.8346391 27683.4439 18.928175 2000-2008 –> 2009-2019 9.2623173 48636.1311
Indo-Pacific (26.75,27] cstar_tref ~ sal + aou + phosphate + phosphate_star 4620 4.6186014 27261.0415 21.294506 2000-2008 –> 2009-2019 8.8160253 47829.0037
Indo-Pacific (26.75,27] cstar_tref ~ sal + aou + silicate + phosphate + phosphate_star 4620 4.6042741 27234.3336 20.417790 2000-2008 –> 2009-2019 8.7873453 47779.6201
Indo-Pacific (26.75,27] cstar_tref ~ temp + aou + phosphate + phosphate_star 4620 4.5195678 27060.7592 22.587891 2000-2008 –> 2009-2019 8.6178185 47456.4683
Indo-Pacific (26.75,27] cstar_tref ~ temp + aou + silicate + phosphate + phosphate_star 4620 4.4910489 27004.2693 21.096126 2000-2008 –> 2009-2019 8.5573840 47345.6567
Indo-Pacific (27,27.25] cstar_tref ~ sal + aou + silicate + phosphate + phosphate_star 4568 4.2292066 26151.6661 40.359235 1982-1999 –> 2000-2008 7.7949415 73714.1824
Indo-Pacific (27,27.25] cstar_tref ~ temp + aou + nitrate + silicate + phosphate_star 4568 4.0055429 25655.2588 49.799294 1982-1999 –> 2000-2008 7.3721959 72202.3843
Indo-Pacific (27,27.25] cstar_tref ~ temp + aou + phosphate + phosphate_star 4568 4.2126690 26113.8712 43.196336 1982-1999 –> 2000-2008 7.8207376 73882.9839
Indo-Pacific (27,27.25] cstar_tref ~ temp + aou + silicate + phosphate + phosphate_star 4568 3.8257666 25235.7315 28.555206 1982-1999 –> 2000-2008 7.1285974 71444.5911
Indo-Pacific (27,27.25] cstar_tref ~ temp + nitrate + silicate + phosphate_star 4568 4.4625769 26640.3786 72.276444 1982-1999 –> 2000-2008 7.9568018 73842.8445
Indo-Pacific (27,27.25] cstar_tref ~ aou + silicate + phosphate + phosphate_star 5368 4.9996749 32523.9515 33.137375 2000-2008 –> 2009-2019 9.2907167 58806.2277
Indo-Pacific (27,27.25] cstar_tref ~ sal + aou + silicate + phosphate + phosphate_star 5368 4.9630411 32446.9967 35.215683 2000-2008 –> 2009-2019 9.1922477 58598.6628
Indo-Pacific (27,27.25] cstar_tref ~ temp + aou + nitrate + silicate + phosphate_star 5368 4.8065903 32103.1149 38.756934 2000-2008 –> 2009-2019 8.8121332 57758.3737
Indo-Pacific (27,27.25] cstar_tref ~ temp + aou + phosphate + phosphate_star 5368 4.9677680 32455.2170 41.181662 2000-2008 –> 2009-2019 9.1804370 58569.0882
Indo-Pacific (27,27.25] cstar_tref ~ temp + aou + silicate + phosphate + phosphate_star 5368 4.3759429 31095.3701 26.859631 2000-2008 –> 2009-2019 8.2017095 56331.1016
Indo-Pacific (27.25,27.5] cstar_tref ~ sal + aou + nitrate + silicate + phosphate_star 4039 3.3644463 21276.9271 31.943258 1982-1999 –> 2000-2008 6.2858318 60608.8167
Indo-Pacific (27.25,27.5] cstar_tref ~ sal + aou + silicate + phosphate + phosphate_star 4039 3.6148276 21856.7722 31.787265 1982-1999 –> 2000-2008 6.6853031 61974.3012
Indo-Pacific (27.25,27.5] cstar_tref ~ sal + aou + silicate + phosphate_star 4039 3.6290799 21886.5590 31.201192 1982-1999 –> 2000-2008 6.7002103 62005.4540
Indo-Pacific (27.25,27.5] cstar_tref ~ temp + aou + nitrate + silicate + phosphate_star 4039 3.5505971 21711.9469 32.714186 1982-1999 –> 2000-2008 6.6340860 61896.2304
Indo-Pacific (27.25,27.5] cstar_tref ~ temp + aou + silicate + phosphate + phosphate_star 4039 3.2730327 21054.4073 32.962584 1982-1999 –> 2000-2008 6.1973260 60401.9994
Indo-Pacific (27.25,27.5] cstar_tref ~ sal + aou + nitrate + silicate + phosphate_star 4935 3.7984566 27191.3742 30.763268 2000-2008 –> 2009-2019 7.1629028 48468.3013
Indo-Pacific (27.25,27.5] cstar_tref ~ sal + aou + silicate + phosphate + phosphate_star 4935 4.1106150 27970.8855 32.033024 2000-2008 –> 2009-2019 7.7254426 49827.6577
Indo-Pacific (27.25,27.5] cstar_tref ~ sal + aou + silicate + phosphate_star 4935 4.1456000 28052.5325 30.395240 2000-2008 –> 2009-2019 7.7746799 49939.0916
Indo-Pacific (27.25,27.5] cstar_tref ~ temp + aou + nitrate + silicate + phosphate_star 4935 4.0646343 27859.8589 30.502849 2000-2008 –> 2009-2019 7.6152314 49571.8058
Indo-Pacific (27.25,27.5] cstar_tref ~ temp + aou + silicate + phosphate + phosphate_star 4935 3.6825512 26885.5122 32.539426 2000-2008 –> 2009-2019 6.9555839 47939.9195
Indo-Pacific (27.5,27.75] cstar_tref ~ sal + aou + nitrate + silicate + phosphate_star 4064 3.0861626 20706.8068 22.095058 1982-1999 –> 2000-2008 5.4001237 57321.3554
Indo-Pacific (27.5,27.75] cstar_tref ~ sal + aou + silicate + phosphate + phosphate_star 4064 3.0443640 20595.9700 9.327871 1982-1999 –> 2000-2008 5.3879214 57416.5342
Indo-Pacific (27.5,27.75] cstar_tref ~ sal + aou + silicate + phosphate_star 4064 3.1804065 20949.3017 20.678327 1982-1999 –> 2000-2008 5.5419993 57892.1371
Indo-Pacific (27.5,27.75] cstar_tref ~ sal + nitrate + silicate + phosphate_star 4064 3.2498349 21124.8272 27.387013 1982-1999 –> 2000-2008 5.6349372 58228.2340
Indo-Pacific (27.5,27.75] cstar_tref ~ sal + silicate + phosphate + phosphate_star 4064 3.2368427 21092.2680 23.477959 1982-1999 –> 2000-2008 5.6140649 58142.0306
Indo-Pacific (27.5,27.75] cstar_tref ~ sal + aou + nitrate + silicate + phosphate_star 4876 3.8360163 26962.4128 26.671827 2000-2008 –> 2009-2019 6.9221789 47669.2196
Indo-Pacific (27.5,27.75] cstar_tref ~ sal + aou + silicate + phosphate + phosphate_star 4876 3.7213482 26666.4554 10.513159 2000-2008 –> 2009-2019 6.7657122 47262.4254
Indo-Pacific (27.5,27.75] cstar_tref ~ sal + aou + silicate + phosphate_star 4876 3.9928783 27351.2531 24.983842 2000-2008 –> 2009-2019 7.1732848 48300.5548
Indo-Pacific (27.5,27.75] cstar_tref ~ sal + nitrate + silicate + phosphate_star 4876 3.9962227 27359.4179 32.475641 2000-2008 –> 2009-2019 7.2460576 48484.2451
Indo-Pacific (27.5,27.75] cstar_tref ~ temp + aou + silicate + phosphate + phosphate_star 4876 3.9296820 27197.6711 19.536419 2000-2008 –> 2009-2019 7.1045490 48134.8034
Indo-Pacific (27.75,27.85] cstar_tref ~ aou + silicate + phosphate + phosphate_star 1555 2.6839109 7495.3242 18.741605 1982-1999 –> 2000-2008 4.6157998 20516.2332
Indo-Pacific (27.75,27.85] cstar_tref ~ sal + aou + silicate + phosphate + phosphate_star 1555 2.6836540 7497.0264 18.642565 1982-1999 –> 2000-2008 4.6053778 20486.8995
Indo-Pacific (27.75,27.85] cstar_tref ~ temp + aou + nitrate + silicate + phosphate_star 1555 2.6866482 7500.4944 18.596488 1982-1999 –> 2000-2008 4.6230658 20538.0656
Indo-Pacific (27.75,27.85] cstar_tref ~ temp + aou + silicate + phosphate 1555 2.6925693 7505.3410 18.400293 1982-1999 –> 2000-2008 4.6378569 20569.5303
Indo-Pacific (27.75,27.85] cstar_tref ~ temp + aou + silicate + phosphate + phosphate_star 1555 2.5956168 7393.2920 18.533639 1982-1999 –> 2000-2008 4.5031991 20336.9140
Indo-Pacific (27.75,27.85] cstar_tref ~ sal + aou + nitrate + silicate + phosphate_star 2026 2.9681471 10171.8633 31.686491 2000-2008 –> 2009-2019 5.6568984 17674.7912
Indo-Pacific (27.75,27.85] cstar_tref ~ sal + aou + silicate + phosphate + phosphate_star 2026 3.0026006 10218.6269 30.980275 2000-2008 –> 2009-2019 5.6862545 17715.6533
Indo-Pacific (27.75,27.85] cstar_tref ~ sal + nitrate + silicate + phosphate_star 2026 2.9867207 10195.1402 28.760017 2000-2008 –> 2009-2019 5.6813878 17702.9033
Indo-Pacific (27.75,27.85] cstar_tref ~ temp + aou + phosphate + phosphate_star 2026 2.9577599 10155.6582 31.706119 2000-2008 –> 2009-2019 5.6758613 17690.3506
Indo-Pacific (27.75,27.85] cstar_tref ~ temp + aou + silicate + phosphate + phosphate_star 2026 2.9108359 10092.8590 29.031327 2000-2008 –> 2009-2019 5.5064527 17486.1510
Indo-Pacific (27.85,27.95] cstar_tref ~ temp + aou + nitrate + phosphate_star 1964 2.8296725 9671.3428 24.941384 1982-1999 –> 2000-2008 4.9510654 27094.8546
Indo-Pacific (27.85,27.95] cstar_tref ~ temp + aou + nitrate + silicate + phosphate_star 1964 2.8253047 9667.2750 24.624299 1982-1999 –> 2000-2008 4.9459782 27090.0667
Indo-Pacific (27.85,27.95] cstar_tref ~ temp + aou + silicate + phosphate + phosphate_star 1964 2.9226142 9800.2861 31.450314 1982-1999 –> 2000-2008 5.0639019 27300.6604
Indo-Pacific (27.85,27.95] cstar_tref ~ temp + nitrate + phosphate_star 1964 2.8842446 9744.3757 30.089390 1982-1999 –> 2000-2008 5.0067268 27170.0047
Indo-Pacific (27.85,27.95] cstar_tref ~ temp + nitrate + silicate + phosphate_star 1964 2.8746435 9733.2784 29.310870 1982-1999 –> 2000-2008 4.9965208 27158.6210
Indo-Pacific (27.85,27.95] cstar_tref ~ temp + aou + nitrate 2485 2.9957879 12515.2447 34.344816 2000-2008 –> 2009-2019 5.8325346 22194.3953
Indo-Pacific (27.85,27.95] cstar_tref ~ temp + aou + nitrate + phosphate_star 2485 2.9891703 12506.2540 34.512839 2000-2008 –> 2009-2019 5.8188428 22177.5968
Indo-Pacific (27.85,27.95] cstar_tref ~ temp + aou + nitrate + silicate 2485 2.9841143 12497.8404 33.884360 2000-2008 –> 2009-2019 5.8176753 22174.5774
Indo-Pacific (27.85,27.95] cstar_tref ~ temp + aou + nitrate + silicate + phosphate_star 2485 2.9784354 12490.3733 34.058594 2000-2008 –> 2009-2019 5.8037401 22157.6483
Indo-Pacific (27.85,27.95] cstar_tref ~ temp + aou + silicate + phosphate + phosphate_star 2485 2.9350011 12417.3624 38.832321 2000-2008 –> 2009-2019 5.8576153 22217.6485
Indo-Pacific (27.95,28.05] cstar_tref ~ aou + silicate + phosphate + phosphate_star 1700 2.2099405 7532.4740 8.300638 1982-1999 –> 2000-2008 4.1321042 22229.4297
Indo-Pacific (27.95,28.05] cstar_tref ~ sal + aou + silicate + phosphate + phosphate_star 1700 2.1706324 7473.4541 8.502508 1982-1999 –> 2000-2008 4.0613511 22055.5300
Indo-Pacific (27.95,28.05] cstar_tref ~ temp + aou + nitrate + silicate + phosphate_star 1700 2.2132827 7539.6122 8.135234 1982-1999 –> 2000-2008 4.1482806 22285.7233
Indo-Pacific (27.95,28.05] cstar_tref ~ temp + aou + silicate + phosphate 1700 2.2240383 7554.0946 8.348214 1982-1999 –> 2000-2008 4.1569272 22290.4785
Indo-Pacific (27.95,28.05] cstar_tref ~ temp + aou + silicate + phosphate + phosphate_star 1700 2.1509590 7442.4978 8.001836 1982-1999 –> 2000-2008 4.0266185 21967.9095
Indo-Pacific (27.95,28.05] cstar_tref ~ sal + aou + nitrate + phosphate_star 2121 2.3344559 9627.4152 8.114849 2000-2008 –> 2009-2019 4.5412987 17155.1199
Indo-Pacific (27.95,28.05] cstar_tref ~ sal + aou + nitrate + silicate + phosphate_star 2121 2.3295082 9620.4150 8.254005 2000-2008 –> 2009-2019 4.5107108 17110.3857
Indo-Pacific (27.95,28.05] cstar_tref ~ sal + aou + silicate + phosphate + phosphate_star 2121 2.4048197 9755.3859 8.396749 2000-2008 –> 2009-2019 4.5754520 17228.8399
Indo-Pacific (27.95,28.05] cstar_tref ~ temp + aou + phosphate + phosphate_star 2121 2.3980224 9741.3788 8.922395 2000-2008 –> 2009-2019 4.6245468 17299.2719
Indo-Pacific (27.95,28.05] cstar_tref ~ temp + aou + silicate + phosphate + phosphate_star 2121 2.3597710 9675.1682 8.699549 2000-2008 –> 2009-2019 4.5107300 17117.6661
Indo-Pacific (28.05,28.1] cstar_tref ~ sal + aou + silicate + phosphate 1204 1.9361704 5019.7985 8.586962 1982-1999 –> 2000-2008 3.5567398 14745.7644
Indo-Pacific (28.05,28.1] cstar_tref ~ sal + aou + silicate + phosphate + phosphate_star 1204 1.8505923 4912.9419 9.143550 1982-1999 –> 2000-2008 3.4470375 14564.2970
Indo-Pacific (28.05,28.1] cstar_tref ~ sal + silicate + phosphate + phosphate_star 1204 1.9408263 5025.5820 8.727570 1982-1999 –> 2000-2008 3.5819108 14815.8051
Indo-Pacific (28.05,28.1] cstar_tref ~ temp + aou + nitrate + silicate + phosphate_star 1204 1.8672540 4934.5251 9.942146 1982-1999 –> 2000-2008 3.4767239 14627.3853
Indo-Pacific (28.05,28.1] cstar_tref ~ temp + aou + silicate + phosphate + phosphate_star 1204 1.8153765 4866.6773 8.948253 1982-1999 –> 2000-2008 3.4419856 14613.6447
Indo-Pacific (28.05,28.1] cstar_tref ~ aou + silicate + phosphate + phosphate_star 1480 2.0189887 6291.7443 9.987210 2000-2008 –> 2009-2019 3.9129613 11258.4815
Indo-Pacific (28.05,28.1] cstar_tref ~ sal + aou + silicate + phosphate + phosphate_star 1480 1.9639299 6211.9027 9.739216 2000-2008 –> 2009-2019 3.8145222 11124.8446
Indo-Pacific (28.05,28.1] cstar_tref ~ temp + aou + nitrate + silicate + phosphate_star 1480 1.9976364 6262.2735 10.515985 2000-2008 –> 2009-2019 3.8648904 11196.7986
Indo-Pacific (28.05,28.1] cstar_tref ~ temp + aou + silicate + phosphate 1480 2.0305789 6308.6880 10.033303 2000-2008 –> 2009-2019 3.9341136 11287.5517
Indo-Pacific (28.05,28.1] cstar_tref ~ temp + aou + silicate + phosphate + phosphate_star 1480 1.9240869 6151.2346 9.194710 2000-2008 –> 2009-2019 3.7394634 11017.9118
Indo-Pacific (28.1, Inf] cstar_tref ~ sal + aou + silicate + phosphate 10112 1.3942708 35430.4957 13.436590 1982-1999 –> 2000-2008 2.6710714 103088.7417
Indo-Pacific (28.1, Inf] cstar_tref ~ sal + aou + silicate + phosphate + phosphate_star 10112 1.3022101 34051.0208 15.782178 1982-1999 –> 2000-2008 2.4733465 98198.0752
Indo-Pacific (28.1, Inf] cstar_tref ~ temp + aou + nitrate + silicate + phosphate_star 10112 1.3244424 34393.3857 12.768469 1982-1999 –> 2000-2008 2.4502983 96936.7828
Indo-Pacific (28.1, Inf] cstar_tref ~ temp + aou + silicate + phosphate + phosphate_star 10112 1.3593151 34918.9958 16.549331 1982-1999 –> 2000-2008 2.5993386 101390.5784
Indo-Pacific (28.1, Inf] cstar_tref ~ temp + nitrate + silicate + phosphate_star 10112 1.5189133 37162.1461 17.072914 1982-1999 –> 2000-2008 2.8481821 106458.2405
Indo-Pacific (28.1, Inf] cstar_tref ~ sal + aou + nitrate + silicate + phosphate_star 12319 1.6225597 46898.7219 9.024654 2000-2008 –> 2009-2019 3.1046139 83566.0449
Indo-Pacific (28.1, Inf] cstar_tref ~ sal + aou + silicate + phosphate 12319 1.5499918 45769.4022 10.853455 2000-2008 –> 2009-2019 2.9442626 81199.8979
Indo-Pacific (28.1, Inf] cstar_tref ~ sal + aou + silicate + phosphate + phosphate_star 12319 1.4654909 44390.2118 13.078916 2000-2008 –> 2009-2019 2.7677010 78441.2326
Indo-Pacific (28.1, Inf] cstar_tref ~ temp + aou + nitrate + silicate + phosphate_star 12319 1.5412287 45631.7127 12.618266 2000-2008 –> 2009-2019 2.8656711 80025.0985
Indo-Pacific (28.1, Inf] cstar_tref ~ temp + aou + silicate + phosphate + phosphate_star 12319 1.5232127 45342.0128 14.186735 2000-2008 –> 2009-2019 2.8825278 80261.0087

5.3.2 per fitting unit

lm_best %>%
  group_by(basin, gamma_slab, eras) %>% 
  summarise(rmse_sum_mean = mean(rmse_sum),
            ais_sum_mean = mean(aic_sum)) %>% 
  ungroup() %>% 
  kable() %>%
  add_header_above() %>%
  kable_styling() %>%
  scroll_box(width = "100%", height = "400px")
basin gamma_slab eras rmse_sum_mean ais_sum_mean
Atlantic (-Inf,26] 1982-1999 –> 2000-2008 2.8606816 1162.9097
Atlantic (-Inf,26] 2000-2008 –> 2009-2019 2.7024907 811.0608
Atlantic (26,26.5] 1982-1999 –> 2000-2008 8.0388930 12658.7669
Atlantic (26,26.5] 2000-2008 –> 2009-2019 8.0020539 9067.8095
Atlantic (26.5,26.75] 1982-1999 –> 2000-2008 6.2215471 14628.6182
Atlantic (26.5,26.75] 2000-2008 –> 2009-2019 6.6580076 10797.6308
Atlantic (26.75,27] 1982-1999 –> 2000-2008 3.7715789 19338.3984
Atlantic (26.75,27] 2000-2008 –> 2009-2019 4.4525690 16295.2246
Atlantic (27,27.25] 1982-1999 –> 2000-2008 3.8497107 16526.8602
Atlantic (27,27.25] 2000-2008 –> 2009-2019 4.2155198 13791.2870
Atlantic (27.25,27.5] 1982-1999 –> 2000-2008 4.5141282 19028.0162
Atlantic (27.25,27.5] 2000-2008 –> 2009-2019 5.2385427 14964.7590
Atlantic (27.5,27.75] 1982-1999 –> 2000-2008 4.9651132 26344.4935
Atlantic (27.5,27.75] 2000-2008 –> 2009-2019 5.5974036 21179.3204
Atlantic (27.75,27.85] 1982-1999 –> 2000-2008 3.5545993 8040.7780
Atlantic (27.75,27.85] 2000-2008 –> 2009-2019 3.7260684 6350.0122
Atlantic (27.85,27.95] 1982-1999 –> 2000-2008 5.9254635 9949.5110
Atlantic (27.85,27.95] 2000-2008 –> 2009-2019 6.5507075 8128.5419
Atlantic (27.95,28.05] 1982-1999 –> 2000-2008 8.8258163 14474.6535
Atlantic (27.95,28.05] 2000-2008 –> 2009-2019 8.5086092 10714.0352
Atlantic (28.05,28.1] 1982-1999 –> 2000-2008 1.9982281 4562.6544
Atlantic (28.05,28.1] 2000-2008 –> 2009-2019 2.1440880 3708.2042
Atlantic (28.1,28.15] 1982-1999 –> 2000-2008 1.4627727 4200.1089
Atlantic (28.1,28.15] 2000-2008 –> 2009-2019 1.6456442 3534.0824
Atlantic (28.15,28.2] 1982-1999 –> 2000-2008 1.1015012 5392.5253
Atlantic (28.15,28.2] 2000-2008 –> 2009-2019 1.3293766 4801.7499
Atlantic (28.2, Inf] 1982-1999 –> 2000-2008 0.7099053 3929.4515
Atlantic (28.2, Inf] 2000-2008 –> 2009-2019 0.8256531 4449.8379
Indo-Pacific (-Inf,26] 1982-1999 –> 2000-2008 14.0523948 73118.3431
Indo-Pacific (-Inf,26] 2000-2008 –> 2009-2019 13.5637328 53971.2918
Indo-Pacific (26,26.5] 1982-1999 –> 2000-2008 9.2185866 67862.1278
Indo-Pacific (26,26.5] 2000-2008 –> 2009-2019 9.4997504 50302.3150
Indo-Pacific (26.5,26.75] 1982-1999 –> 2000-2008 7.8655688 52631.1097
Indo-Pacific (26.5,26.75] 2000-2008 –> 2009-2019 8.1542322 39556.1903
Indo-Pacific (26.75,27] 1982-1999 –> 2000-2008 7.9328215 61797.7564
Indo-Pacific (26.75,27] 2000-2008 –> 2009-2019 8.8081781 47809.3760
Indo-Pacific (27,27.25] 1982-1999 –> 2000-2008 7.6146548 73017.3972
Indo-Pacific (27,27.25] 2000-2008 –> 2009-2019 8.9354488 58012.6908
Indo-Pacific (27.25,27.5] 1982-1999 –> 2000-2008 6.5005514 61377.3603
Indo-Pacific (27.25,27.5] 2000-2008 –> 2009-2019 7.4467681 49149.3552
Indo-Pacific (27.5,27.75] 1982-1999 –> 2000-2008 5.5158093 57800.0583
Indo-Pacific (27.5,27.75] 2000-2008 –> 2009-2019 7.0423565 47970.2497
Indo-Pacific (27.75,27.85] 1982-1999 –> 2000-2008 4.5970599 20489.5285
Indo-Pacific (27.75,27.85] 2000-2008 –> 2009-2019 5.6413710 17653.9699
Indo-Pacific (27.85,27.95] 1982-1999 –> 2000-2008 4.9928386 27162.8415
Indo-Pacific (27.85,27.95] 2000-2008 –> 2009-2019 5.8260816 22184.3733
Indo-Pacific (27.95,28.05] 1982-1999 –> 2000-2008 4.1050563 22165.8142
Indo-Pacific (27.95,28.05] 2000-2008 –> 2009-2019 4.5525476 17182.2567
Indo-Pacific (28.05,28.1] 1982-1999 –> 2000-2008 3.5008795 14673.3793
Indo-Pacific (28.05,28.1] 2000-2008 –> 2009-2019 3.8531902 11177.1176
Indo-Pacific (28.1, Inf] 1982-1999 –> 2000-2008 2.6084474 101214.4837
Indo-Pacific (28.1, Inf] 2000-2008 –> 2009-2019 2.9129553 80698.6565

5.4 Target variable coefficients

A data frame to map the target variable is prepared.

# create table with two era belonging to one eras
eras_forward <- lm_all_fitted_wide %>%
  arrange(era) %>% 
  group_by(basin, gamma_slab, model) %>% 
  mutate(eras = paste(era, lead(era), sep = " --> ")) %>% 
  ungroup() %>% 
  select(era, eras) %>% 
  unique()

eras_backward <- lm_all_fitted_wide %>%
  arrange(era) %>% 
  group_by(basin, gamma_slab, model) %>% 
  mutate(eras = paste(lag(era), era, sep = " --> ")) %>% 
  ungroup() %>% 
  select(era, eras) %>% 
  unique()

eras_era <- full_join(eras_backward, eras_forward) %>% 
  filter(str_detect(eras, "NA") == FALSE)

# extend best model selection from eras to era
lm_best_target <- full_join(
  lm_best %>% select(basin, gamma_slab, model, eras),
  eras_era)

lm_best_target <- left_join(lm_best_target, lm_all_fitted_wide)

rm(eras_era, eras_forward, eras_backward,
   lm_all_fitted)

5.5 Plot selected model residuals

# plot model diagnostics, if activated
if (params_local$plot_all_figures == "y") {
  # mutate predictors column
  lm_best_plot <- lm_best_target %>%
    select(basin, gamma_slab, model, eras, era) %>%
    mutate(
      predictors = str_remove(model, paste(params_local$MLR_target, "~ ")),
      predictors = str_replace_all(predictors, "\\+ ", "")
    )
  
  # loop across all basins, era, gamma slabs, and MLRs
  # fit all MLR models
  for (i_basin in unique(GLODAP$basin)) {
    for (i_era in unique(GLODAP$era)) {
      #i_basin <- unique(GLODAP$basin)[1]
      #i_era   <- unique(GLODAP$era)[2]
      print(i_basin)
      print(i_era)
      
      GLODAP_basin_era <- GLODAP %>%
        filter(basin == i_basin, era == i_era)
      
      for (i_gamma_slab in unique(GLODAP_basin_era$gamma_slab)) {
        #i_gamma_slab <- unique(GLODAP_basin_era$gamma_slab)[1]
        print(i_gamma_slab)
        
        GLODAP_basin_era_slab <- GLODAP_basin_era %>%
          filter(gamma_slab == i_gamma_slab)
        
        lm_best_basin_era_slab <- lm_best_plot %>%
          filter(basin == i_basin, era == i_era, gamma_slab == i_gamma_slab)
        
        for (i_eras in unique(lm_best_basin_era_slab$eras)) {
          #i_eras <- unique(lm_best_basin_era_slab$eras)[1]
          print(i_eras)
          
          lm_best_basin_era_slab_eras <- lm_best_basin_era_slab %>%
            filter(eras == i_eras)
          
          for (i_predictors in unique(lm_best_basin_era_slab_eras$predictors)) {
            #i_predictors <- unique(lm_best_basin_era_slab$predictors)[1]
            print(i_predictors)
            # extract one model definition
            i_lm <- lm_all %>%
              filter(predictors == i_predictors) %>%
              select(lm_coeff) %>%
              pull()
            
             # fit model
          if (params_local$MLR_type == "rlm") {
            i_lm_fit <- MASS::rlm(as.formula(i_lm),
                                  data = GLODAP_basin_era_slab)
          }
          
          if (params_local$MLR_type == "lm") {
            i_lm_fit <- lm(as.formula(i_lm),
                           data = GLODAP_basin_era_slab)
          }
            
            # plot model diagnostics vs predictors
            
            p_model_predictors <- ggnostic(
              i_lm_fit,
              columnsY = c(params_local$MLR_target, ".fitted", ".resid"),
              title = paste(
                "era:",
                i_era,
                "| eras:",
                i_eras,
                "| basin:",
                i_basin,
                "| gamma slab:",
                i_gamma_slab,
                "| predictors:",
                i_predictors
              )
            )
            
            ggsave(
              plot = p_model_predictors,
              path = paste(path_version_figures, "eMLR_diagnostics/", sep = ""),
              filename = paste(
                "MLR_residuals",
                i_era,
                i_eras,
                i_basin,
                i_gamma_slab,
                i_predictors,
                "predictors.png",
                sep = "_"
              ),
              width = 14,
              height = 8
            )

            rm(p_model_predictors)
            
            
            # plot model diagnostics vs location
            
            GLODAP_basin_era_slab <- GLODAP_basin_era_slab %>%
              mutate(fitted = i_lm_fit$fitted.values,
                     residuals = i_lm_fit$residuals)
            
            GLODAP_basin_era_slab_long <- GLODAP_basin_era_slab %>% 
              pivot_longer(cols = c(params_local$MLR_target , fitted, residuals),
                           names_to = "estimate",
                           values_to = "value"
              ) %>% 
              pivot_longer(cols = c(lat, lon, depth),
                           names_to = "coordinate_type",
                           values_to = "coordinate_value"
              )

             p_model_coordinate <- GLODAP_basin_era_slab_long %>%
              ggplot(aes(coordinate_value, value)) +
              geom_bin2d() +
              scale_fill_viridis_c() +
              labs(
                title = paste(
                  "era:",
                  i_era,
                  "| eras:",
                  i_eras,
                  "| basin:",
                  i_basin,
                  "| gamma slab:",
                  i_gamma_slab,
                  "| predictors:",
                  i_predictors
                )
              ) +
              facet_grid(estimate~coordinate_type,
                         scales = "free")

            ggsave(
              plot = p_model_coordinate,
              path = paste(path_version_figures, "eMLR_diagnostics", sep = ""),
              filename = paste(
                "Location_MLR_residuals",
                i_era,
                i_eras,
                i_basin,
                i_gamma_slab,
                i_predictors,
                "predictors.png",
                sep = "_"
              ),
              width = 14,
              height = 8
            )

            rm(p_model_coordinate)
            
          }
          
        }
        
      }
    }
  }
  
  rm(
    lm_best_plot,
    lm_best_basin_era_slab,
    i_rmse,
    GLODAP_basin_era,
    GLODAP_basin_era_slab,
    i_lm,
    lm_all_fitted,
    i_basin,
    i_era,
    i_gamma_slab,
    i_predictors,
    lm_all,
    i_aic,
    i_n_predictors,
    i_resid_max
  )
  
}

Individual residual plots of the MLR models for each basin, era, eras and neutral density (gamma) slab are available at:

/nfs/kryo/work/jenmueller/emlr_cant/model/v_XXX/figures/eMLR_diagnostics/

5.6 Cant coeffcients

A data frame of coefficient offsets is prepared to facilitate the direct mapping of Cant.

# pivot long format
lm_best_long <- lm_best_target %>%
  pivot_longer(cols = starts_with("coeff_"),
               names_to = "term",
               values_to = "estimate",
               names_prefix = "coeff_")

# subtract coefficients of adjacent era  
lm_best_long <- lm_best_long %>%
  arrange(era) %>%
  group_by(basin, gamma_slab, eras, model, term) %>%
  mutate(delta_coeff = estimate - lag(estimate)) %>%
  ungroup() %>%
  arrange(basin, gamma_slab, model, term, eras) %>%
  drop_na() %>%
  select(-c(era,estimate))

# pivot back to wide format
lm_best_cant <- lm_best_long %>%
  pivot_wider(values_from = delta_coeff,
              names_from = term,
              names_prefix = "delta_coeff_",
              values_fill = 0)

5.7 Write files

lm_best_target %>%
  select(
    basin,
    gamma_slab,
    model,
    eras,
    era,
    starts_with("coeff_")
  ) %>%
  write_csv(paste(path_version_data,
                  "lm_best_target.csv",
                  sep = ""))

lm_best_cant %>%
  select(
    basin,
    gamma_slab,
    model,
    eras,
    starts_with("delta_coeff_")
  ) %>%
  write_csv(paste(path_version_data,
                  "lm_best_cant.csv",
                  sep = ""))

6 Model diagnotics

6.1 Selection criterion vs predictors

The selection criterion (aic) was plotted against the number of predictors (limited to 3 - 9).

6.1.1 All models

lm_all_fitted_wide %>%
  ggplot(aes(as.factor(n_predictors),
             !!sym(params_local$MLR_criterion),
             col = basin)) +
  geom_hline(yintercept = 10) +
  geom_boxplot() +
  facet_grid(gamma_slab~era) +
  scale_color_brewer(palette = "Set1") +
  labs(x="Number of predictors")

Version Author Date
cb63c16 Donghe-Zhu 2021-03-03
ffda45a Donghe-Zhu 2021-03-03
691ba81 Donghe-Zhu 2021-03-03
c5e45a2 Donghe-Zhu 2021-03-03
89c3e58 Donghe-Zhu 2021-03-03
c911669 Donghe-Zhu 2021-03-03
b71c719 Donghe-Zhu 2021-03-01
13666ca Donghe-Zhu 2021-03-01
c6e60fe Donghe-Zhu 2021-03-01
7a388f7 Donghe-Zhu 2021-03-01
799e913 Donghe-Zhu 2021-03-01
66ff99f Donghe-Zhu 2021-03-01
ac9bb7a Donghe-Zhu 2021-02-28
efdc047 Donghe-Zhu 2021-02-28
e9a7418 Donghe-Zhu 2021-02-28
e152917 Donghe-Zhu 2021-02-28
287123c Donghe-Zhu 2021-02-27
54d5b5b Donghe-Zhu 2021-02-27
330f064 Donghe-Zhu 2021-02-27
adbc9bc Donghe-Zhu 2021-02-27
5937141 Donghe-Zhu 2021-02-27
4414bbf Donghe-Zhu 2021-02-27
a265efb Donghe-Zhu 2021-02-27
19edd1e Donghe-Zhu 2021-02-27
f20483f Donghe-Zhu 2021-02-26
6a2c7b3 Donghe-Zhu 2021-02-25
02b976d Donghe-Zhu 2021-02-24
354c224 Donghe-Zhu 2021-02-24
1a0a88a Donghe-Zhu 2021-02-24
57f701e Donghe-Zhu 2021-02-24
06f3149 Donghe-Zhu 2021-02-16
401eab3 Donghe-Zhu 2021-02-15
e3bba84 Donghe-Zhu 2021-02-15
5dce4b1 Donghe-Zhu 2021-02-15
4469a0c Donghe-Zhu 2021-02-13
5ae6a69 Donghe-Zhu 2021-02-10
05385dc Donghe-Zhu 2021-02-10
f791ae4 Donghe-Zhu 2021-02-09
f71ae34 Donghe-Zhu 2021-02-09
c011832 Donghe-Zhu 2021-02-09
a145fa7 Donghe-Zhu 2021-02-09
c344e42 Donghe-Zhu 2021-02-08
2f095d7 Donghe-Zhu 2021-02-07
1fad5f1 Donghe-Zhu 2021-02-07
ca03c39 Donghe-Zhu 2021-02-07
cd7c52c Donghe-Zhu 2021-02-04
bcf84f4 Donghe-Zhu 2021-02-02
a518739 Donghe-Zhu 2021-02-01
61666de Donghe-Zhu 2021-01-31
865b582 Donghe-Zhu 2021-01-31
3e68089 Donghe-Zhu 2021-01-31
ecf335c Donghe-Zhu 2021-01-31
a618965 Donghe-Zhu 2021-01-31
59e006e Donghe-Zhu 2021-01-31
a1c8f87 Donghe-Zhu 2021-01-31
ae5c18f Donghe-Zhu 2021-01-31
b50fe52 Donghe-Zhu 2021-01-31
ac99ae5 jens-daniel-mueller 2021-01-29
b5bdcaf Donghe-Zhu 2021-01-29
442010d Donghe-Zhu 2021-01-29
372adf5 Donghe-Zhu 2021-01-29
af8788e Donghe-Zhu 2021-01-29
21c91c9 Donghe-Zhu 2021-01-29
eded038 Donghe-Zhu 2021-01-29
541d4dd Donghe-Zhu 2021-01-29
6a75576 Donghe-Zhu 2021-01-28
16fba40 Donghe-Zhu 2021-01-28
12bc567 Donghe-Zhu 2021-01-27
ceed31b Donghe-Zhu 2021-01-27
342402d Donghe-Zhu 2021-01-27
5bad5c2 Donghe-Zhu 2021-01-27
61efb56 Donghe-Zhu 2021-01-25
48f638e Donghe-Zhu 2021-01-25
c1cec47 Donghe-Zhu 2021-01-25
05ffb0c Donghe-Zhu 2021-01-25
8b97165 Donghe-Zhu 2021-01-25
c569946 Donghe-Zhu 2021-01-24
a2f0d56 Donghe-Zhu 2021-01-23
28509fc Donghe-Zhu 2021-01-23
4c28e4a Donghe-Zhu 2021-01-22
24cc264 jens-daniel-mueller 2021-01-22
7891955 Donghe-Zhu 2021-01-21
d4cf1cb Donghe-Zhu 2021-01-21
1f3e5b6 jens-daniel-mueller 2021-01-20
0e7bdf1 jens-daniel-mueller 2021-01-15
4571843 jens-daniel-mueller 2021-01-14
b3564aa jens-daniel-mueller 2021-01-14
8d032c3 jens-daniel-mueller 2021-01-14
17dee1d jens-daniel-mueller 2021-01-13
7cdea0c jens-daniel-mueller 2021-01-06
fa85b93 jens-daniel-mueller 2021-01-06
e5cb81a Donghe-Zhu 2021-01-05
a499f10 Donghe-Zhu 2021-01-05
fb8a752 Donghe-Zhu 2020-12-23
8fae0b2 Donghe-Zhu 2020-12-21
c8b76b3 jens-daniel-mueller 2020-12-19

6.1.2 Best models

lm_best_target %>%
  ggplot(aes("",
             !!sym(params_local$MLR_criterion),
             col = basin)) +
  geom_hline(yintercept = 10) +
  geom_boxplot() +
  facet_grid(gamma_slab~era) +
  scale_color_brewer(palette = "Set1") +
  labs(x="Number of predictors pooled")

Version Author Date
cb63c16 Donghe-Zhu 2021-03-03
ffda45a Donghe-Zhu 2021-03-03
691ba81 Donghe-Zhu 2021-03-03
c5e45a2 Donghe-Zhu 2021-03-03
89c3e58 Donghe-Zhu 2021-03-03
c407a50 Donghe-Zhu 2021-03-03
c911669 Donghe-Zhu 2021-03-03
b71c719 Donghe-Zhu 2021-03-01
13666ca Donghe-Zhu 2021-03-01
c6e60fe Donghe-Zhu 2021-03-01
7a388f7 Donghe-Zhu 2021-03-01
799e913 Donghe-Zhu 2021-03-01
66ff99f Donghe-Zhu 2021-03-01
ac9bb7a Donghe-Zhu 2021-02-28
efdc047 Donghe-Zhu 2021-02-28
e9a7418 Donghe-Zhu 2021-02-28
e152917 Donghe-Zhu 2021-02-28
287123c Donghe-Zhu 2021-02-27
54d5b5b Donghe-Zhu 2021-02-27
330f064 Donghe-Zhu 2021-02-27
adbc9bc Donghe-Zhu 2021-02-27
5937141 Donghe-Zhu 2021-02-27
4414bbf Donghe-Zhu 2021-02-27
a265efb Donghe-Zhu 2021-02-27
19edd1e Donghe-Zhu 2021-02-27
f20483f Donghe-Zhu 2021-02-26
6a2c7b3 Donghe-Zhu 2021-02-25
354c224 Donghe-Zhu 2021-02-24
1a0a88a Donghe-Zhu 2021-02-24
57f701e Donghe-Zhu 2021-02-24
06f3149 Donghe-Zhu 2021-02-16
401eab3 Donghe-Zhu 2021-02-15
e3bba84 Donghe-Zhu 2021-02-15
5dce4b1 Donghe-Zhu 2021-02-15
4469a0c Donghe-Zhu 2021-02-13
5ae6a69 Donghe-Zhu 2021-02-10
05385dc Donghe-Zhu 2021-02-10
f791ae4 Donghe-Zhu 2021-02-09
f71ae34 Donghe-Zhu 2021-02-09
c011832 Donghe-Zhu 2021-02-09
a145fa7 Donghe-Zhu 2021-02-09
c344e42 Donghe-Zhu 2021-02-08
2f095d7 Donghe-Zhu 2021-02-07
1fad5f1 Donghe-Zhu 2021-02-07
ca03c39 Donghe-Zhu 2021-02-07
e2ffc14 Donghe-Zhu 2021-02-05
cd7c52c Donghe-Zhu 2021-02-04
bcf84f4 Donghe-Zhu 2021-02-02
a518739 Donghe-Zhu 2021-02-01
61666de Donghe-Zhu 2021-01-31
865b582 Donghe-Zhu 2021-01-31
3e68089 Donghe-Zhu 2021-01-31
ecf335c Donghe-Zhu 2021-01-31
a618965 Donghe-Zhu 2021-01-31
59e006e Donghe-Zhu 2021-01-31
a1c8f87 Donghe-Zhu 2021-01-31
ae5c18f Donghe-Zhu 2021-01-31
b50fe52 Donghe-Zhu 2021-01-31
ac99ae5 jens-daniel-mueller 2021-01-29
b5bdcaf Donghe-Zhu 2021-01-29
442010d Donghe-Zhu 2021-01-29
372adf5 Donghe-Zhu 2021-01-29
af8788e Donghe-Zhu 2021-01-29
21c91c9 Donghe-Zhu 2021-01-29
eded038 Donghe-Zhu 2021-01-29
541d4dd Donghe-Zhu 2021-01-29
6a75576 Donghe-Zhu 2021-01-28
16fba40 Donghe-Zhu 2021-01-28
12bc567 Donghe-Zhu 2021-01-27
ceed31b Donghe-Zhu 2021-01-27
342402d Donghe-Zhu 2021-01-27
5bad5c2 Donghe-Zhu 2021-01-27
61efb56 Donghe-Zhu 2021-01-25
48f638e Donghe-Zhu 2021-01-25
c1cec47 Donghe-Zhu 2021-01-25
05ffb0c Donghe-Zhu 2021-01-25
8b97165 Donghe-Zhu 2021-01-25
c569946 Donghe-Zhu 2021-01-24
a2f0d56 Donghe-Zhu 2021-01-23
28509fc Donghe-Zhu 2021-01-23
4c28e4a Donghe-Zhu 2021-01-22
24cc264 jens-daniel-mueller 2021-01-22
7891955 Donghe-Zhu 2021-01-21
d4cf1cb Donghe-Zhu 2021-01-21
1f3e5b6 jens-daniel-mueller 2021-01-20
0e7bdf1 jens-daniel-mueller 2021-01-15
4571843 jens-daniel-mueller 2021-01-14
b3564aa jens-daniel-mueller 2021-01-14
8d032c3 jens-daniel-mueller 2021-01-14
17dee1d jens-daniel-mueller 2021-01-13
7cdea0c jens-daniel-mueller 2021-01-06
fa85b93 jens-daniel-mueller 2021-01-06
e5cb81a Donghe-Zhu 2021-01-05
a499f10 Donghe-Zhu 2021-01-05
fb8a752 Donghe-Zhu 2020-12-23
8fae0b2 Donghe-Zhu 2020-12-21
c8b76b3 jens-daniel-mueller 2020-12-19

6.2 RMSE correlation between eras

RMSE was plotted to compare the agreement for one model applied to two adjacent eras (ie check whether the same predictor combination performs equal in both eras).

6.2.1 All models

# find max rmse to scale axis
max_rmse <-
  max(c(lm_all_fitted_wide_eras$rmse,
        lm_all_fitted_wide_eras$rmse_sum - lm_all_fitted_wide_eras$rmse))

lm_all_fitted_wide_eras %>%
  ggplot(aes(rmse, rmse_sum - rmse, col = gamma_slab)) +
  geom_point() +
  scale_color_viridis_d() +
  coord_equal(xlim = c(0,max_rmse),
              ylim = c(0,max_rmse)) +
  facet_grid(eras ~ basin)

Version Author Date
cb63c16 Donghe-Zhu 2021-03-03
ffda45a Donghe-Zhu 2021-03-03
691ba81 Donghe-Zhu 2021-03-03
c5e45a2 Donghe-Zhu 2021-03-03
89c3e58 Donghe-Zhu 2021-03-03
c911669 Donghe-Zhu 2021-03-03
13666ca Donghe-Zhu 2021-03-01
c6e60fe Donghe-Zhu 2021-03-01
7a388f7 Donghe-Zhu 2021-03-01
799e913 Donghe-Zhu 2021-03-01
66ff99f Donghe-Zhu 2021-03-01
ac9bb7a Donghe-Zhu 2021-02-28
efdc047 Donghe-Zhu 2021-02-28
e9a7418 Donghe-Zhu 2021-02-28
287123c Donghe-Zhu 2021-02-27
54d5b5b Donghe-Zhu 2021-02-27
330f064 Donghe-Zhu 2021-02-27
adbc9bc Donghe-Zhu 2021-02-27
5937141 Donghe-Zhu 2021-02-27
4414bbf Donghe-Zhu 2021-02-27
a265efb Donghe-Zhu 2021-02-27
19edd1e Donghe-Zhu 2021-02-27
f20483f Donghe-Zhu 2021-02-26
6a2c7b3 Donghe-Zhu 2021-02-25
02b976d Donghe-Zhu 2021-02-24
354c224 Donghe-Zhu 2021-02-24
1a0a88a Donghe-Zhu 2021-02-24
57f701e Donghe-Zhu 2021-02-24
06f3149 Donghe-Zhu 2021-02-16
e3bba84 Donghe-Zhu 2021-02-15
5dce4b1 Donghe-Zhu 2021-02-15
4469a0c Donghe-Zhu 2021-02-13
5ae6a69 Donghe-Zhu 2021-02-10
05385dc Donghe-Zhu 2021-02-10
f791ae4 Donghe-Zhu 2021-02-09
f71ae34 Donghe-Zhu 2021-02-09
c011832 Donghe-Zhu 2021-02-09
a145fa7 Donghe-Zhu 2021-02-09
c344e42 Donghe-Zhu 2021-02-08
2f095d7 Donghe-Zhu 2021-02-07
1fad5f1 Donghe-Zhu 2021-02-07
ca03c39 Donghe-Zhu 2021-02-07
cd7c52c Donghe-Zhu 2021-02-04
bcf84f4 Donghe-Zhu 2021-02-02
61666de Donghe-Zhu 2021-01-31
865b582 Donghe-Zhu 2021-01-31
3e68089 Donghe-Zhu 2021-01-31
ecf335c Donghe-Zhu 2021-01-31
a618965 Donghe-Zhu 2021-01-31
59e006e Donghe-Zhu 2021-01-31
a1c8f87 Donghe-Zhu 2021-01-31
ae5c18f Donghe-Zhu 2021-01-31
b50fe52 Donghe-Zhu 2021-01-31
ac99ae5 jens-daniel-mueller 2021-01-29
b5bdcaf Donghe-Zhu 2021-01-29
442010d Donghe-Zhu 2021-01-29
372adf5 Donghe-Zhu 2021-01-29
af8788e Donghe-Zhu 2021-01-29
21c91c9 Donghe-Zhu 2021-01-29
eded038 Donghe-Zhu 2021-01-29
541d4dd Donghe-Zhu 2021-01-29
6a75576 Donghe-Zhu 2021-01-28
16fba40 Donghe-Zhu 2021-01-28
12bc567 Donghe-Zhu 2021-01-27
ceed31b Donghe-Zhu 2021-01-27
342402d Donghe-Zhu 2021-01-27
5bad5c2 Donghe-Zhu 2021-01-27
61efb56 Donghe-Zhu 2021-01-25
48f638e Donghe-Zhu 2021-01-25
c1cec47 Donghe-Zhu 2021-01-25
05ffb0c Donghe-Zhu 2021-01-25
8b97165 Donghe-Zhu 2021-01-25
c569946 Donghe-Zhu 2021-01-24
a2f0d56 Donghe-Zhu 2021-01-23
28509fc Donghe-Zhu 2021-01-23
4c28e4a Donghe-Zhu 2021-01-22
24cc264 jens-daniel-mueller 2021-01-22
7891955 Donghe-Zhu 2021-01-21
d4cf1cb Donghe-Zhu 2021-01-21
1f3e5b6 jens-daniel-mueller 2021-01-20
0e7bdf1 jens-daniel-mueller 2021-01-15
4571843 jens-daniel-mueller 2021-01-14
b3564aa jens-daniel-mueller 2021-01-14
8d032c3 jens-daniel-mueller 2021-01-14
17dee1d jens-daniel-mueller 2021-01-13
7cdea0c jens-daniel-mueller 2021-01-06
fa85b93 jens-daniel-mueller 2021-01-06
e5cb81a Donghe-Zhu 2021-01-05
a499f10 Donghe-Zhu 2021-01-05
fb8a752 Donghe-Zhu 2020-12-23
8fae0b2 Donghe-Zhu 2020-12-21
c8b76b3 jens-daniel-mueller 2020-12-19
rm(max_rmse)

6.2.2 Best models

# find max rmse to scale axis
max_rmse <-
  max(c(lm_best$rmse,
        lm_best$rmse_sum - lm_best$rmse))

lm_best %>%
  ggplot(aes(rmse, rmse_sum - rmse, col = gamma_slab)) +
  geom_point() +
  scale_color_viridis_d() +
  coord_equal(xlim = c(0,max_rmse),
              ylim = c(0,max_rmse)) +
  facet_grid(eras ~ basin)

Version Author Date
cb63c16 Donghe-Zhu 2021-03-03
ffda45a Donghe-Zhu 2021-03-03
691ba81 Donghe-Zhu 2021-03-03
c5e45a2 Donghe-Zhu 2021-03-03
89c3e58 Donghe-Zhu 2021-03-03
c407a50 Donghe-Zhu 2021-03-03
c911669 Donghe-Zhu 2021-03-03
b71c719 Donghe-Zhu 2021-03-01
13666ca Donghe-Zhu 2021-03-01
c6e60fe Donghe-Zhu 2021-03-01
7a388f7 Donghe-Zhu 2021-03-01
799e913 Donghe-Zhu 2021-03-01
66ff99f Donghe-Zhu 2021-03-01
ac9bb7a Donghe-Zhu 2021-02-28
efdc047 Donghe-Zhu 2021-02-28
e9a7418 Donghe-Zhu 2021-02-28
e152917 Donghe-Zhu 2021-02-28
287123c Donghe-Zhu 2021-02-27
54d5b5b Donghe-Zhu 2021-02-27
330f064 Donghe-Zhu 2021-02-27
adbc9bc Donghe-Zhu 2021-02-27
5937141 Donghe-Zhu 2021-02-27
4414bbf Donghe-Zhu 2021-02-27
a265efb Donghe-Zhu 2021-02-27
19edd1e Donghe-Zhu 2021-02-27
f20483f Donghe-Zhu 2021-02-26
6a2c7b3 Donghe-Zhu 2021-02-25
354c224 Donghe-Zhu 2021-02-24
1a0a88a Donghe-Zhu 2021-02-24
57f701e Donghe-Zhu 2021-02-24
06f3149 Donghe-Zhu 2021-02-16
401eab3 Donghe-Zhu 2021-02-15
e3bba84 Donghe-Zhu 2021-02-15
5dce4b1 Donghe-Zhu 2021-02-15
4469a0c Donghe-Zhu 2021-02-13
5ae6a69 Donghe-Zhu 2021-02-10
05385dc Donghe-Zhu 2021-02-10
f791ae4 Donghe-Zhu 2021-02-09
f71ae34 Donghe-Zhu 2021-02-09
c011832 Donghe-Zhu 2021-02-09
a145fa7 Donghe-Zhu 2021-02-09
c344e42 Donghe-Zhu 2021-02-08
2f095d7 Donghe-Zhu 2021-02-07
1fad5f1 Donghe-Zhu 2021-02-07
ca03c39 Donghe-Zhu 2021-02-07
e2ffc14 Donghe-Zhu 2021-02-05
cd7c52c Donghe-Zhu 2021-02-04
bcf84f4 Donghe-Zhu 2021-02-02
a518739 Donghe-Zhu 2021-02-01
61666de Donghe-Zhu 2021-01-31
865b582 Donghe-Zhu 2021-01-31
3e68089 Donghe-Zhu 2021-01-31
ecf335c Donghe-Zhu 2021-01-31
a618965 Donghe-Zhu 2021-01-31
59e006e Donghe-Zhu 2021-01-31
a1c8f87 Donghe-Zhu 2021-01-31
ae5c18f Donghe-Zhu 2021-01-31
b50fe52 Donghe-Zhu 2021-01-31
ac99ae5 jens-daniel-mueller 2021-01-29
b5bdcaf Donghe-Zhu 2021-01-29
442010d Donghe-Zhu 2021-01-29
372adf5 Donghe-Zhu 2021-01-29
af8788e Donghe-Zhu 2021-01-29
21c91c9 Donghe-Zhu 2021-01-29
eded038 Donghe-Zhu 2021-01-29
541d4dd Donghe-Zhu 2021-01-29
6a75576 Donghe-Zhu 2021-01-28
16fba40 Donghe-Zhu 2021-01-28
12bc567 Donghe-Zhu 2021-01-27
ceed31b Donghe-Zhu 2021-01-27
342402d Donghe-Zhu 2021-01-27
5bad5c2 Donghe-Zhu 2021-01-27
61efb56 Donghe-Zhu 2021-01-25
48f638e Donghe-Zhu 2021-01-25
c1cec47 Donghe-Zhu 2021-01-25
05ffb0c Donghe-Zhu 2021-01-25
8b97165 Donghe-Zhu 2021-01-25
c569946 Donghe-Zhu 2021-01-24
a2f0d56 Donghe-Zhu 2021-01-23
28509fc Donghe-Zhu 2021-01-23
4c28e4a Donghe-Zhu 2021-01-22
24cc264 jens-daniel-mueller 2021-01-22
7891955 Donghe-Zhu 2021-01-21
d4cf1cb Donghe-Zhu 2021-01-21
1f3e5b6 jens-daniel-mueller 2021-01-20
0e7bdf1 jens-daniel-mueller 2021-01-15
4571843 jens-daniel-mueller 2021-01-14
b3564aa jens-daniel-mueller 2021-01-14
8d032c3 jens-daniel-mueller 2021-01-14
17dee1d jens-daniel-mueller 2021-01-13
7cdea0c jens-daniel-mueller 2021-01-06
fa85b93 jens-daniel-mueller 2021-01-06
e5cb81a Donghe-Zhu 2021-01-05
a499f10 Donghe-Zhu 2021-01-05
fb8a752 Donghe-Zhu 2020-12-23
8fae0b2 Donghe-Zhu 2020-12-21
c8b76b3 jens-daniel-mueller 2020-12-19
rm(max_rmse)

6.3 Predictor counts

The number of models where a particular predictor was included were counted for each basin, density slab and compared eras

# calculate cases of predictor used
lm_all_stats <- lm_best_long %>% 
  filter(term != "(Intercept)",
         delta_coeff != 0) %>% 
  group_by(basin, eras, gamma_slab) %>% 
  count(term) %>% 
  ungroup() %>% 
  pivot_wider(values_from = n,
              names_from = term,
              values_fill = 0)

# print table
lm_all_stats %>%
  gt(rowname_col = "gamma_slab",
     groupname_col = c("basin", "eras")) %>% 
  summary_rows(
    groups = TRUE,
    fns = list(total = "sum")
  )
aou nitrate phosphate phosphate_star sal silicate temp
Atlantic - 1982-1999 --> 2000-2008
(-Inf,26] 5 1 4 5 3 2 2
(26,26.5] 5 3 2 4 1 4 4
(26.5,26.75] 5 1 4 4 2 5 2
(26.75,27] 5 1 4 4 1 5 3
(27,27.25] 5 2 3 4 3 5 2
(27.25,27.5] 5 4 1 3 3 5 2
(27.5,27.75] 5 1 4 3 4 3 1
(27.75,27.85] 5 2 3 3 5 4 0
(27.85,27.95] 5 0 5 5 2 3 2
(27.95,28.05] 5 2 3 5 2 3 3
(28.05,28.1] 5 0 5 5 2 3 2
(28.1,28.15] 5 1 4 5 3 4 1
(28.15,28.2] 5 5 0 4 2 3 3
(28.2, Inf] 5 5 0 3 4 3 1
total 70.00 28.00 42.00 57.00 37.00 52.00 28.00
Atlantic - 2000-2008 --> 2009-2019
(-Inf,26] 5 0 4 5 3 3 2
(26,26.5] 5 3 2 4 1 4 4
(26.5,26.75] 5 1 4 4 2 5 2
(26.75,27] 5 1 4 4 2 5 2
(27,27.25] 5 2 2 4 4 5 1
(27.25,27.5] 5 5 0 3 2 5 2
(27.5,27.75] 5 2 3 3 5 4 0
(27.75,27.85] 5 2 3 3 5 4 0
(27.85,27.95] 5 0 5 5 2 3 2
(27.95,28.05] 5 2 3 5 2 3 3
(28.05,28.1] 5 1 4 5 3 3 2
(28.1,28.15] 5 1 4 5 3 3 2
(28.15,28.2] 5 5 0 4 2 3 3
(28.2, Inf] 5 5 0 3 4 3 1
total 70.00 30.00 38.00 57.00 40.00 53.00 26.00
Indo-Pacific - 1982-1999 --> 2000-2008
(-Inf,26] 4 1 4 5 2 4 3
(26,26.5] 5 1 4 4 1 5 3
(26.5,26.75] 5 1 4 5 2 4 2
(26.75,27] 5 0 5 5 2 3 2
(27,27.25] 4 2 3 5 1 4 4
(27.25,27.5] 5 2 2 5 3 5 2
(27.5,27.75] 3 2 2 5 5 5 0
(27.75,27.85] 5 1 4 4 1 5 3
(27.85,27.95] 3 4 1 5 0 3 5
(27.95,28.05] 5 1 4 4 1 5 3
(28.05,28.1] 4 1 4 4 3 5 2
(28.1, Inf] 4 2 3 4 2 5 3
total 52.00 18.00 40.00 55.00 23.00 53.00 32.00
Indo-Pacific - 2000-2008 --> 2009-2019
(-Inf,26] 4 1 4 5 2 4 3
(26,26.5] 5 1 4 4 1 5 3
(26.5,26.75] 4 2 3 5 1 5 3
(26.75,27] 5 0 5 5 2 3 2
(27,27.25] 5 1 4 5 1 4 3
(27.25,27.5] 5 2 2 5 3 5 2
(27.5,27.75] 4 2 2 5 4 5 1
(27.75,27.85] 4 2 3 5 3 4 2
(27.85,27.95] 5 4 1 3 0 3 5
(27.95,28.05] 5 2 3 5 3 3 2
(28.05,28.1] 5 1 4 4 1 5 3
(28.1, Inf] 5 2 3 4 3 5 2
total 56.00 20.00 38.00 55.00 24.00 51.00 31.00

6.4 RMSE alternatives

AIC is an alternative criterion to RMSE to judge model quality, but not (yet) taken into account.

lm_all_fitted_wide_eras %>% 
  ggplot(aes(rmse, aic, col = gamma_slab)) +
  geom_point() +
  scale_color_viridis_d() +
  facet_grid(eras~basin)

Version Author Date
cb63c16 Donghe-Zhu 2021-03-03
ffda45a Donghe-Zhu 2021-03-03
691ba81 Donghe-Zhu 2021-03-03
c5e45a2 Donghe-Zhu 2021-03-03
89c3e58 Donghe-Zhu 2021-03-03
c911669 Donghe-Zhu 2021-03-03
13666ca Donghe-Zhu 2021-03-01
c6e60fe Donghe-Zhu 2021-03-01
7a388f7 Donghe-Zhu 2021-03-01
799e913 Donghe-Zhu 2021-03-01
66ff99f Donghe-Zhu 2021-03-01
ac9bb7a Donghe-Zhu 2021-02-28
efdc047 Donghe-Zhu 2021-02-28
e9a7418 Donghe-Zhu 2021-02-28
287123c Donghe-Zhu 2021-02-27
54d5b5b Donghe-Zhu 2021-02-27
330f064 Donghe-Zhu 2021-02-27
adbc9bc Donghe-Zhu 2021-02-27
5937141 Donghe-Zhu 2021-02-27
4414bbf Donghe-Zhu 2021-02-27
a265efb Donghe-Zhu 2021-02-27
19edd1e Donghe-Zhu 2021-02-27
f20483f Donghe-Zhu 2021-02-26
6a2c7b3 Donghe-Zhu 2021-02-25
02b976d Donghe-Zhu 2021-02-24
354c224 Donghe-Zhu 2021-02-24
1a0a88a Donghe-Zhu 2021-02-24
57f701e Donghe-Zhu 2021-02-24
06f3149 Donghe-Zhu 2021-02-16
e3bba84 Donghe-Zhu 2021-02-15
5dce4b1 Donghe-Zhu 2021-02-15
4469a0c Donghe-Zhu 2021-02-13
5ae6a69 Donghe-Zhu 2021-02-10
05385dc Donghe-Zhu 2021-02-10
f791ae4 Donghe-Zhu 2021-02-09
f71ae34 Donghe-Zhu 2021-02-09
c011832 Donghe-Zhu 2021-02-09
a145fa7 Donghe-Zhu 2021-02-09
c344e42 Donghe-Zhu 2021-02-08
2f095d7 Donghe-Zhu 2021-02-07
1fad5f1 Donghe-Zhu 2021-02-07
ca03c39 Donghe-Zhu 2021-02-07
cd7c52c Donghe-Zhu 2021-02-04
bcf84f4 Donghe-Zhu 2021-02-02
61666de Donghe-Zhu 2021-01-31
865b582 Donghe-Zhu 2021-01-31
3e68089 Donghe-Zhu 2021-01-31
ecf335c Donghe-Zhu 2021-01-31
a618965 Donghe-Zhu 2021-01-31
59e006e Donghe-Zhu 2021-01-31
a1c8f87 Donghe-Zhu 2021-01-31
ae5c18f Donghe-Zhu 2021-01-31
b50fe52 Donghe-Zhu 2021-01-31
ac99ae5 jens-daniel-mueller 2021-01-29
b5bdcaf Donghe-Zhu 2021-01-29
442010d Donghe-Zhu 2021-01-29
372adf5 Donghe-Zhu 2021-01-29
af8788e Donghe-Zhu 2021-01-29
21c91c9 Donghe-Zhu 2021-01-29
eded038 Donghe-Zhu 2021-01-29
541d4dd Donghe-Zhu 2021-01-29
6a75576 Donghe-Zhu 2021-01-28
16fba40 Donghe-Zhu 2021-01-28
12bc567 Donghe-Zhu 2021-01-27
ceed31b Donghe-Zhu 2021-01-27
342402d Donghe-Zhu 2021-01-27
5bad5c2 Donghe-Zhu 2021-01-27
61efb56 Donghe-Zhu 2021-01-25
48f638e Donghe-Zhu 2021-01-25
c1cec47 Donghe-Zhu 2021-01-25
05ffb0c Donghe-Zhu 2021-01-25
8b97165 Donghe-Zhu 2021-01-25
c569946 Donghe-Zhu 2021-01-24
a2f0d56 Donghe-Zhu 2021-01-23
28509fc Donghe-Zhu 2021-01-23
4c28e4a Donghe-Zhu 2021-01-22
24cc264 jens-daniel-mueller 2021-01-22
7891955 Donghe-Zhu 2021-01-21
d4cf1cb Donghe-Zhu 2021-01-21
1f3e5b6 jens-daniel-mueller 2021-01-20
0e7bdf1 jens-daniel-mueller 2021-01-15
4571843 jens-daniel-mueller 2021-01-14
b3564aa jens-daniel-mueller 2021-01-14
8d032c3 jens-daniel-mueller 2021-01-14
17dee1d jens-daniel-mueller 2021-01-13
7cdea0c jens-daniel-mueller 2021-01-06
fa85b93 jens-daniel-mueller 2021-01-06
e5cb81a Donghe-Zhu 2021-01-05
a499f10 Donghe-Zhu 2021-01-05
fb8a752 Donghe-Zhu 2020-12-23
8fae0b2 Donghe-Zhu 2020-12-21
c8b76b3 jens-daniel-mueller 2020-12-19
lm_best %>% 
  ggplot(aes(rmse, aic, col = gamma_slab)) +
  geom_point() +
  scale_color_viridis_d() +
  facet_grid(eras~basin)

Version Author Date
cb63c16 Donghe-Zhu 2021-03-03
ffda45a Donghe-Zhu 2021-03-03
691ba81 Donghe-Zhu 2021-03-03
c5e45a2 Donghe-Zhu 2021-03-03
89c3e58 Donghe-Zhu 2021-03-03
c407a50 Donghe-Zhu 2021-03-03
c911669 Donghe-Zhu 2021-03-03
b71c719 Donghe-Zhu 2021-03-01
13666ca Donghe-Zhu 2021-03-01
c6e60fe Donghe-Zhu 2021-03-01
7a388f7 Donghe-Zhu 2021-03-01
799e913 Donghe-Zhu 2021-03-01
66ff99f Donghe-Zhu 2021-03-01
ac9bb7a Donghe-Zhu 2021-02-28
efdc047 Donghe-Zhu 2021-02-28
e9a7418 Donghe-Zhu 2021-02-28
e152917 Donghe-Zhu 2021-02-28
287123c Donghe-Zhu 2021-02-27
54d5b5b Donghe-Zhu 2021-02-27
330f064 Donghe-Zhu 2021-02-27
adbc9bc Donghe-Zhu 2021-02-27
5937141 Donghe-Zhu 2021-02-27
4414bbf Donghe-Zhu 2021-02-27
a265efb Donghe-Zhu 2021-02-27
19edd1e Donghe-Zhu 2021-02-27
f20483f Donghe-Zhu 2021-02-26
6a2c7b3 Donghe-Zhu 2021-02-25
354c224 Donghe-Zhu 2021-02-24
1a0a88a Donghe-Zhu 2021-02-24
57f701e Donghe-Zhu 2021-02-24
06f3149 Donghe-Zhu 2021-02-16
401eab3 Donghe-Zhu 2021-02-15
e3bba84 Donghe-Zhu 2021-02-15
5dce4b1 Donghe-Zhu 2021-02-15
4469a0c Donghe-Zhu 2021-02-13
5ae6a69 Donghe-Zhu 2021-02-10
05385dc Donghe-Zhu 2021-02-10
f791ae4 Donghe-Zhu 2021-02-09
f71ae34 Donghe-Zhu 2021-02-09
c011832 Donghe-Zhu 2021-02-09
a145fa7 Donghe-Zhu 2021-02-09
c344e42 Donghe-Zhu 2021-02-08
2f095d7 Donghe-Zhu 2021-02-07
1fad5f1 Donghe-Zhu 2021-02-07
ca03c39 Donghe-Zhu 2021-02-07
e2ffc14 Donghe-Zhu 2021-02-05
cd7c52c Donghe-Zhu 2021-02-04
bcf84f4 Donghe-Zhu 2021-02-02
a518739 Donghe-Zhu 2021-02-01
61666de Donghe-Zhu 2021-01-31
865b582 Donghe-Zhu 2021-01-31
3e68089 Donghe-Zhu 2021-01-31
ecf335c Donghe-Zhu 2021-01-31
a618965 Donghe-Zhu 2021-01-31
59e006e Donghe-Zhu 2021-01-31
a1c8f87 Donghe-Zhu 2021-01-31
ae5c18f Donghe-Zhu 2021-01-31
b50fe52 Donghe-Zhu 2021-01-31
ac99ae5 jens-daniel-mueller 2021-01-29
b5bdcaf Donghe-Zhu 2021-01-29
442010d Donghe-Zhu 2021-01-29
372adf5 Donghe-Zhu 2021-01-29
af8788e Donghe-Zhu 2021-01-29
21c91c9 Donghe-Zhu 2021-01-29
eded038 Donghe-Zhu 2021-01-29
541d4dd Donghe-Zhu 2021-01-29
6a75576 Donghe-Zhu 2021-01-28
16fba40 Donghe-Zhu 2021-01-28
12bc567 Donghe-Zhu 2021-01-27
ceed31b Donghe-Zhu 2021-01-27
342402d Donghe-Zhu 2021-01-27
5bad5c2 Donghe-Zhu 2021-01-27
61efb56 Donghe-Zhu 2021-01-25
48f638e Donghe-Zhu 2021-01-25
c1cec47 Donghe-Zhu 2021-01-25
05ffb0c Donghe-Zhu 2021-01-25
8b97165 Donghe-Zhu 2021-01-25
c569946 Donghe-Zhu 2021-01-24
a2f0d56 Donghe-Zhu 2021-01-23
28509fc Donghe-Zhu 2021-01-23
4c28e4a Donghe-Zhu 2021-01-22
24cc264 jens-daniel-mueller 2021-01-22
7891955 Donghe-Zhu 2021-01-21
d4cf1cb Donghe-Zhu 2021-01-21
1f3e5b6 jens-daniel-mueller 2021-01-20
0e7bdf1 jens-daniel-mueller 2021-01-15
4571843 jens-daniel-mueller 2021-01-14
b3564aa jens-daniel-mueller 2021-01-14
8d032c3 jens-daniel-mueller 2021-01-14
17dee1d jens-daniel-mueller 2021-01-13
7cdea0c jens-daniel-mueller 2021-01-06
fa85b93 jens-daniel-mueller 2021-01-06
e5cb81a Donghe-Zhu 2021-01-05
a499f10 Donghe-Zhu 2021-01-05
fb8a752 Donghe-Zhu 2020-12-23
8fae0b2 Donghe-Zhu 2020-12-21
c8b76b3 jens-daniel-mueller 2020-12-19

sessionInfo()
R version 4.0.3 (2020-10-10)
Platform: x86_64-pc-linux-gnu (64-bit)
Running under: openSUSE Leap 15.2

Matrix products: default
BLAS:   /usr/local/R-4.0.3/lib64/R/lib/libRblas.so
LAPACK: /usr/local/R-4.0.3/lib64/R/lib/libRlapack.so

locale:
 [1] LC_CTYPE=en_US.UTF-8       LC_NUMERIC=C              
 [3] LC_TIME=en_US.UTF-8        LC_COLLATE=en_US.UTF-8    
 [5] LC_MONETARY=en_US.UTF-8    LC_MESSAGES=en_US.UTF-8   
 [7] LC_PAPER=en_US.UTF-8       LC_NAME=C                 
 [9] LC_ADDRESS=C               LC_TELEPHONE=C            
[11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C       

attached base packages:
[1] stats     graphics  grDevices utils     datasets  methods   base     

other attached packages:
 [1] gt_0.2.2         corrr_0.4.3      broom_0.7.5      kableExtra_1.3.1
 [5] knitr_1.30       olsrr_0.5.3      GGally_2.0.0     lubridate_1.7.9 
 [9] metR_0.9.0       scico_1.2.0      patchwork_1.1.1  collapse_1.5.0  
[13] forcats_0.5.0    stringr_1.4.0    dplyr_1.0.2      purrr_0.3.4     
[17] readr_1.4.0      tidyr_1.1.2      tibble_3.0.4     ggplot2_3.3.3   
[21] tidyverse_1.3.0  workflowr_1.6.2 

loaded via a namespace (and not attached):
 [1] fs_1.5.0                 webshot_0.5.2            RColorBrewer_1.1-2      
 [4] httr_1.4.2               rprojroot_2.0.2          tools_4.0.3             
 [7] backports_1.1.10         R6_2.5.0                 nortest_1.0-4           
[10] DBI_1.1.0                colorspace_2.0-0         withr_2.3.0             
[13] gridExtra_2.3            tidyselect_1.1.0         curl_4.3                
[16] compiler_4.0.3           git2r_0.27.1             cli_2.2.0               
[19] rvest_0.3.6              xml2_1.3.2               sass_0.2.0              
[22] labeling_0.4.2           scales_1.1.1             checkmate_2.0.0         
[25] goftest_1.2-2            digest_0.6.27            foreign_0.8-80          
[28] rmarkdown_2.5            rio_0.5.16               pkgconfig_2.0.3         
[31] htmltools_0.5.0          highr_0.8                dbplyr_1.4.4            
[34] rlang_0.4.10             readxl_1.3.1             rstudioapi_0.13         
[37] farver_2.0.3             generics_0.1.0           jsonlite_1.7.2          
[40] zip_2.1.1                car_3.0-10               magrittr_2.0.1          
[43] Matrix_1.2-18            Rcpp_1.0.5               munsell_0.5.0           
[46] fansi_0.4.1              abind_1.4-5              lifecycle_0.2.0         
[49] stringi_1.5.3            whisker_0.4              yaml_2.2.1              
[52] carData_3.0-4            plyr_1.8.6               grid_4.0.3              
[55] blob_1.2.1               parallel_4.0.3           promises_1.1.1          
[58] crayon_1.3.4             lattice_0.20-41          haven_2.3.1             
[61] hms_0.5.3                pillar_1.4.7             reprex_0.3.0            
[64] glue_1.4.2               evaluate_0.14            RcppArmadillo_0.10.1.2.2
[67] data.table_1.13.6        modelr_0.1.8             vctrs_0.3.6             
[70] httpuv_1.5.4             cellranger_1.1.0         gtable_0.3.0            
[73] reshape_0.8.8            assertthat_0.2.1         xfun_0.20               
[76] openxlsx_4.2.3           RcppEigen_0.3.3.9.1      later_1.1.0.1           
[79] viridisLite_0.3.0        ellipsis_0.3.1           here_1.0.1