Last updated: 2021-03-03

Checks: 7 0

Knit directory: emlr_mod_v_XXX/

This reproducible R Markdown analysis was created with workflowr (version 1.6.2). The Checks tab describes the reproducibility checks that were applied when the results were created. The Past versions tab lists the development history.


Great! Since the R Markdown file has been committed to the Git repository, you know the exact version of the code that produced these results.

Great job! The global environment was empty. Objects defined in the global environment can affect the analysis in your R Markdown file in unknown ways. For reproduciblity it’s best to always run the code in an empty environment.

The command set.seed(20200707) was run prior to running the code in the R Markdown file. Setting a seed ensures that any results that rely on randomness, e.g. subsampling or permutations, are reproducible.

Great job! Recording the operating system, R version, and package versions is critical for reproducibility.

Nice! There were no cached chunks for this analysis, so you can be confident that you successfully produced the results during this run.

Great job! Using relative paths to the files within your workflowr project makes it easier to run your code on other machines.

Great! You are using Git for version control. Tracking code development and connecting the code version to the results is critical for reproducibility.

The results in this page were generated with repository version 390075e. See the Past versions tab to see a history of the changes made to the R Markdown and HTML files.

Note that you need to be careful to ensure that all relevant files for the analysis have been committed to Git prior to generating the results (you can use wflow_publish or wflow_git_commit). workflowr only checks the R Markdown file, but you know if there are other scripts or data files that it depends on. Below is the status of the Git repository when the results were generated:


Ignored files:
    Ignored:    .Rhistory
    Ignored:    .Rproj.user/

Unstaged changes:
    Modified:   data/auxillary/params_local.rds

Note that any generated files, e.g. HTML, png, CSS, etc., are not included in this status report because it is ok for generated content to have uncommitted changes.


These are the previous versions of the repository in which changes were made to the R Markdown (analysis/eMLR_model_fitting.Rmd) and HTML (docs/eMLR_model_fitting.html) files. If you’ve configured a remote Git repository (see ?wflow_git_remote), click on the hyperlinks in the table below to view the files as they were in that past version.

File Version Author Date Message
html 0d0bca1 Donghe-Zhu 2021-03-03 Build site.
html cb63c16 Donghe-Zhu 2021-03-03 Build site.
html ffda45a Donghe-Zhu 2021-03-03 Build site.
html 691ba81 Donghe-Zhu 2021-03-03 Build site.
html c5e45a2 Donghe-Zhu 2021-03-03 Build site.
html 89c3e58 Donghe-Zhu 2021-03-03 Build site.
html c407a50 Donghe-Zhu 2021-03-03 Build site.
html c911669 Donghe-Zhu 2021-03-03 Build site.
Rmd e1f9d21 Donghe-Zhu 2021-03-03 local rebuild
html b71c719 Donghe-Zhu 2021-03-01 Build site.
html 13666ca Donghe-Zhu 2021-03-01 Build site.
Rmd c3195f4 Donghe-Zhu 2021-03-01 local rebuild
html c6e60fe Donghe-Zhu 2021-03-01 Build site.
Rmd 8ef147d Donghe-Zhu 2021-03-01 local rebuild
html 7a388f7 Donghe-Zhu 2021-03-01 Build site.
html 799e913 Donghe-Zhu 2021-03-01 Build site.
Rmd aa780a7 Donghe-Zhu 2021-03-01 local rebuild
html 66ff99f Donghe-Zhu 2021-03-01 Build site.
html ac9bb7a Donghe-Zhu 2021-02-28 Build site.
html efdc047 Donghe-Zhu 2021-02-28 Build site.
html e9a7418 Donghe-Zhu 2021-02-28 Build site.
Rmd eac1b0e Donghe-Zhu 2021-02-28 local rebuild
html e152917 Donghe-Zhu 2021-02-28 Build site.
html feb991c Donghe-Zhu 2021-02-27 Build site.
Rmd 4563314 Donghe-Zhu 2021-02-27 local rebuild
html 287123c Donghe-Zhu 2021-02-27 Build site.
Rmd 764a9c2 Donghe-Zhu 2021-02-27 local rebuild
html 54d5b5b Donghe-Zhu 2021-02-27 Build site.
Rmd 2e836bf Donghe-Zhu 2021-02-27 local rebuild
html 330f064 Donghe-Zhu 2021-02-27 Build site.
Rmd f360282 Donghe-Zhu 2021-02-27 local rebuild
html adbc9bc Donghe-Zhu 2021-02-27 Build site.
Rmd a8a8f9c Donghe-Zhu 2021-02-27 local rebuild
html 5937141 Donghe-Zhu 2021-02-27 Build site.
Rmd 5f0bfca Donghe-Zhu 2021-02-27 local rebuild
html 4414bbf Donghe-Zhu 2021-02-27 Build site.
html a265efb Donghe-Zhu 2021-02-27 Build site.
html 19edd1e Donghe-Zhu 2021-02-27 Build site.
Rmd 1ae5bb4 Donghe-Zhu 2021-02-27 local rebuild
html f20483f Donghe-Zhu 2021-02-26 Build site.
html 6a2c7b3 Donghe-Zhu 2021-02-25 Build site.
html 02b976d Donghe-Zhu 2021-02-24 Build site.
html 354c224 Donghe-Zhu 2021-02-24 Build site.
Rmd d910d39 Donghe-Zhu 2021-02-24 local rebuild
html 1a0a88a Donghe-Zhu 2021-02-24 Build site.
Rmd 663e891 Donghe-Zhu 2021-02-24 local rebuild
html 57f701e Donghe-Zhu 2021-02-24 Build site.
html 06f3149 Donghe-Zhu 2021-02-16 Build site.
html 401eab3 Donghe-Zhu 2021-02-15 Build site.
html e3bba84 Donghe-Zhu 2021-02-15 Build site.
html 5dce4b1 Donghe-Zhu 2021-02-15 Build site.
Rmd 35b0f2e Donghe-Zhu 2021-02-15 local rebuild
html 4469a0c Donghe-Zhu 2021-02-13 Build site.
Rmd 8186d57 Donghe-Zhu 2021-02-10 apply nr_obs
html 5ae6a69 Donghe-Zhu 2021-02-10 Build site.
Rmd eeb6557 Donghe-Zhu 2021-02-10 local rebuild
html 05385dc Donghe-Zhu 2021-02-10 Build site.
html f791ae4 Donghe-Zhu 2021-02-09 Build site.
html f71ae34 Donghe-Zhu 2021-02-09 Build site.
html c011832 Donghe-Zhu 2021-02-09 Build site.
html a145fa7 Donghe-Zhu 2021-02-09 Build site.
Rmd 37a41c8 Donghe-Zhu 2021-02-09 local rebuild
html c344e42 Donghe-Zhu 2021-02-08 Build site.
Rmd 8f5fa79 Donghe-Zhu 2021-02-08 local rebuild
html 2f095d7 Donghe-Zhu 2021-02-07 Build site.
html 2305044 Donghe-Zhu 2021-02-07 Build site.
Rmd c3638c1 Donghe-Zhu 2021-02-07 local rebuild
html 1fad5f1 Donghe-Zhu 2021-02-07 Build site.
html ca03c39 Donghe-Zhu 2021-02-07 Build site.
html e2ffc14 Donghe-Zhu 2021-02-05 Build site.
html cd7c52c Donghe-Zhu 2021-02-04 Build site.
Rmd bcf91a8 jens-daniel-mueller 2021-02-04 separate MLR tables, added plot residuals vs location
html bcf84f4 Donghe-Zhu 2021-02-02 Build site.
html a518739 Donghe-Zhu 2021-02-01 Build site.
html 61666de Donghe-Zhu 2021-01-31 Build site.
html 865b582 Donghe-Zhu 2021-01-31 Build site.
html 3e68089 Donghe-Zhu 2021-01-31 Build site.
html ecf335c Donghe-Zhu 2021-01-31 Build site.
html a618965 Donghe-Zhu 2021-01-31 Build site.
html 59e006e Donghe-Zhu 2021-01-31 Build site.
html a1c8f87 Donghe-Zhu 2021-01-31 Build site.
html ae5c18f Donghe-Zhu 2021-01-31 Build site.
html b50fe52 Donghe-Zhu 2021-01-31 Build site.
Rmd ac99ae5 jens-daniel-mueller 2021-01-29 code review
html ac99ae5 jens-daniel-mueller 2021-01-29 code review
html b5bdcaf Donghe-Zhu 2021-01-29 Build site.
Rmd b234505 Donghe-Zhu 2021-01-29 MLR approach across all depth
html 442010d Donghe-Zhu 2021-01-29 Build site.
Rmd e67e7dd Donghe-Zhu 2021-01-29 surface equilibrium approach across all latitudes irrespective of gamma
html 372adf5 Donghe-Zhu 2021-01-29 Build site.
html af8788e Donghe-Zhu 2021-01-29 Build site.
html 21c91c9 Donghe-Zhu 2021-01-29 Build site.
html eded038 Donghe-Zhu 2021-01-29 Build site.
html 541d4dd Donghe-Zhu 2021-01-29 Build site.
html 6a75576 Donghe-Zhu 2021-01-28 Build site.
html 16fba40 Donghe-Zhu 2021-01-28 Build site.
Rmd aecf0c6 Donghe-Zhu 2021-01-28 diagnostic ploting
Rmd a02684e Donghe-Zhu 2021-01-28 error
Rmd 4584be9 Donghe-Zhu 2021-01-28 latest
html 12bc567 Donghe-Zhu 2021-01-27 Build site.
html ceed31b Donghe-Zhu 2021-01-27 Build site.
html 342402d Donghe-Zhu 2021-01-27 Build site.
html 5bad5c2 Donghe-Zhu 2021-01-27 Build site.
Rmd c2c9529 Donghe-Zhu 2021-01-27 random subsetting based on lat
html 61efb56 Donghe-Zhu 2021-01-25 Build site.
html 48f638e Donghe-Zhu 2021-01-25 Build site.
html c1cec47 Donghe-Zhu 2021-01-25 Build site.
html 05ffb0c Donghe-Zhu 2021-01-25 Build site.
html 8b97165 Donghe-Zhu 2021-01-25 Build site.
html c569946 Donghe-Zhu 2021-01-24 Build site.
html a2f0d56 Donghe-Zhu 2021-01-23 Build site.
html 28509fc Donghe-Zhu 2021-01-23 Build site.
html 4c28e4a Donghe-Zhu 2021-01-22 Build site.
html 24cc264 jens-daniel-mueller 2021-01-22 cleaned /docs before creating copies
html 88eb28f Donghe-Zhu 2021-01-21 Build site.
html 2679490 Donghe-Zhu 2021-01-21 Build site.
html 7891955 Donghe-Zhu 2021-01-21 Build site.
html d4cf1cb Donghe-Zhu 2021-01-21 Build site.
Rmd 167eeec Donghe-Zhu 2021-01-21 surface DIC calculation with atmospheric equilibrium option
html 1f3e5b6 jens-daniel-mueller 2021-01-20 Build site.
html 0e7bdf1 jens-daniel-mueller 2021-01-15 cleaning template repository
html 73cbef3 jens-daniel-mueller 2021-01-15 Build site.
html 4571843 jens-daniel-mueller 2021-01-14 revision and html deleted for template copying
html 23151cd jens-daniel-mueller 2021-01-14 Build site.
html b3564aa jens-daniel-mueller 2021-01-14 Build site.
html 8d032c3 jens-daniel-mueller 2021-01-14 Build site.
html 022871c Donghe-Zhu 2021-01-13 Build site.
Rmd d44f36f Donghe-Zhu 2021-01-13 reorder analysis final
html 17dee1d jens-daniel-mueller 2021-01-13 Build site.
Rmd 9e04fd7 jens-daniel-mueller 2021-01-13 local rebuild after revision
html a076226 Donghe-Zhu 2021-01-11 Build site.
Rmd 52eff18 Donghe-Zhu 2021-01-09 Implemet model_run and subsetting
html 7cdea0c jens-daniel-mueller 2021-01-06 Build site.
Rmd b5934dd jens-daniel-mueller 2021-01-06 local rebuild after revision
html fa85b93 jens-daniel-mueller 2021-01-06 Build site.
html e5cb81a Donghe-Zhu 2021-01-05 Build site.
Rmd 608cc45 Donghe-Zhu 2021-01-05 modification of analysis
html a499f10 Donghe-Zhu 2021-01-05 Build site.
Rmd 715bdb4 Donghe-Zhu 2021-01-02 model modification
html fb8a752 Donghe-Zhu 2020-12-23 Build site.
Rmd 82e3c9c Donghe-Zhu 2020-12-23 first build after creating model template
html 8fae0b2 Donghe-Zhu 2020-12-21 Build site.
Rmd 00a1322 Donghe-Zhu 2020-12-21 first build after creating model template
Rmd d73ae35 Donghe-Zhu 2020-12-21 first version with lm error
html c8b76b3 jens-daniel-mueller 2020-12-19 Build site.
Rmd b5fedce jens-daniel-mueller 2020-12-19 first build after creating model template
Rmd 8e8abf5 Jens Müller 2020-12-18 Initial commit

1 Required data

Required are:

  • cleaned and prepared GLODAP-based synthetic model subsetting file
GLODAP <-
  read_csv(paste(path_version_data,
                 "GLODAPv2.2020_MLR_fitting_ready.csv",
                 sep = ""))

2 Predictor combinations

Find all possible combinations of following considered predictor variables:

  • sal, temp, aou, nitrate, silicate, phosphate, phosphate_star
# the following code is a workaround to find all predictor combinations
# using the olsrr package and fit all models for one era, slab, and basin

i_basin <- unique(GLODAP$basin)[1]
i_era   <- unique(GLODAP$era)[1]

# subset one basin and era for fitting
GLODAP_basin_era <- GLODAP %>%
  filter(basin == i_basin, era == i_era)

i_gamma_slab <- unique(GLODAP_basin_era$gamma_slab)[1]
print(i_gamma_slab)

# subset one gamma slab
GLODAP_basin_era_slab <- GLODAP_basin_era %>%
  filter(gamma_slab == i_gamma_slab)

# fit the full linear model, i.e. all predictor combinations
lm_full <- lm(paste(
  params_local$MLR_target,
  paste(params_local$MLR_predictors, collapse = " + "),
  sep = " ~ "
),
data = GLODAP_basin_era_slab)

# fit linear models for all possible predictor combinations
# unfortunately, this functions does not provide model coefficients (yet)
lm_all <- ols_step_all_possible(lm_full)

# convert to tibble
lm_all <- as_tibble(lm_all)

# extract relevant columns and format model formula
lm_all <- lm_all %>% 
  select(n, predictors) %>% 
  mutate(lm_coeff = str_replace_all(predictors, " ", " + "),
         lm_coeff = paste(params_local$MLR_target, "~", lm_coeff))

# remove certain predictor combinations
# lm_rm_ph <- lm_all %>%
#   filter(str_detect(lm_coeff, "phosphate_star")) %>%
#   mutate(lm_coeff_filter = str_remove(lm_coeff, "phosphate_star")) %>%
#   filter(
#     str_detect(lm_coeff_filter, "oxygen") &
#       str_detect(lm_coeff_filter, "phosphate")
#   )

# lm_rm_si <- lm_all %>%
#   filter(str_detect(lm_coeff, "silicate_star")) %>%
#   mutate(lm_coeff_filter = str_remove(lm_coeff, "silicate_star")) %>%
#   filter(str_detect(lm_coeff_filter, "silicate"))

# lm_rm_o2 <- lm_all %>%
#   filter(str_detect(lm_coeff, "phosphate_star")) %>%
#   mutate(lm_coeff_filter = str_remove(lm_coeff, "phosphate_star")) %>%
#   filter(
#     str_detect(lm_coeff_filter, "phosphate") &
#       str_detect(lm_coeff_filter, "oxygen")
#   )

# lm_rm <- bind_rows(lm_rm_ph, lm_rm_o2) %>%
#   select(-lm_coeff_filter) %>%
#   unique()


# remove temp sal predictor combination
lm_all <- lm_all %>%
  # filter(!(
  #   str_detect(lm_coeff, "temp") &
  #     str_detect(lm_coeff, "phosphate_star")
  # )) %>%
  mutate(lm_coeff_filter = str_remove(lm_coeff, "phosphate_star")) %>%
  filter(!(str_detect(lm_coeff_filter, "nitrate") &
             str_detect(lm_coeff_filter, "phosphate")
  )) %>%
  filter(!(
    str_detect(lm_coeff_filter, "temp") &
      str_detect(lm_coeff_filter, "sal")
  )) %>%
  filter(!(
    str_detect(lm_coeff_filter, "oxygen") &
      str_detect(lm_coeff_filter, "aou")
  )) %>%
  select(-lm_coeff_filter)

# lm_rm <- lm_rm_ph %>%
#   select(-lm_coeff_filter) %>%
#   unique()
# 
# lm_all <- anti_join(lm_all, lm_rm)

# remove helper objects
rm(
  i_gamma_slab,
  i_era,
  i_basin,
  GLODAP_basin_era,
  GLODAP_basin_era_slab,
  lm_full,
  lm_rm_ph,
  lm_rm_si,
  lm_rm_o2,
  lm_rm
)

3 Apply predictor threshold

Select combinations with a total number of predictors in the range:

  • Minimum: 3
  • Maximum: 9
lm_all <- lm_all %>% 
  filter(n >= params_local$MLR_predictors_min,
         n <= params_local$MLR_predictors_max)

This results in a total number of MLR models of:

  • 45

4 Fit all models

Individual linear regression models were fitted for the chosen target variable:

  • cstar_tref

as a function of each predictor combination. Fitting was performed separately within each basin, era, and slab. Model diagnostics, such as the root mean squared error (RMSE), were calculated for each fitted model.

# loop across all basins, era, gamma slabs, and MLRs
# fit all MLR models
for (i_basin in unique(GLODAP$basin)) {
  for (i_era in unique(GLODAP$era)) {
    #i_basin <- unique(GLODAP$basin)[1]
    #i_era   <- unique(GLODAP$era)[1]
    print(i_basin)
    print(i_era)
    
    GLODAP_basin_era <- GLODAP %>%
      filter(basin == i_basin, era == i_era)
    
    for (i_gamma_slab in unique(GLODAP_basin_era$gamma_slab)) {
      #i_gamma_slab <- unique(GLODAP_basin_era$gamma_slab)[1]
      print(i_gamma_slab)
      
      GLODAP_basin_era_slab <- GLODAP_basin_era %>%
        filter(gamma_slab == i_gamma_slab)
      
      # number of observations used for each fitting model
      i_nr_obs = nrow(GLODAP_basin_era_slab)
      
      for (i_predictors in unique(lm_all$predictors)) {
        #i_predictors <- unique(lm_all$predictors)[1]
        
        # extract one model definition
        i_lm <- lm_all %>%
          filter(predictors == i_predictors) %>%
          select(lm_coeff) %>%
          pull()
        
        # extract number of predictors
        i_n_predictors <- lm_all %>%
          filter(predictors == i_predictors) %>%
          select(n) %>%
          pull()
        
        if (i_nr_obs > i_n_predictors) {
          # fit model
          if (params_local$MLR_type == "rlm") {
            i_lm_fit <- MASS::rlm(as.formula(i_lm),
                                  data = GLODAP_basin_era_slab)
          }
          
          if (params_local$MLR_type == "lm") {
            i_lm_fit <- lm(as.formula(i_lm),
                           data = GLODAP_basin_era_slab)
          }
          
          # find max predictor correlation
          i_cor_max <- GLODAP_basin_era_slab %>%
            select(!!!syms(str_split(i_predictors, " ",
                                     simplify = TRUE))) %>%
            correlate(quiet = TRUE) %>%
            select(-term) %>%
            abs() %>%
            max(na.rm = TRUE)
          
          # calculate root mean squared error
          i_rmse <- sqrt(c(crossprod(i_lm_fit$residuals)) /
                           length(i_lm_fit$residuals))
          
          # calculate maximum residual
          i_resid_max <- max(abs(i_lm_fit$residuals))
          
          # calculate Akaike information criterion aic
          i_aic <- AIC(i_lm_fit)
          
          # collect model coefficients and diagnostics
          coefficients <- tidy(i_lm_fit)
          
          coefficients <- coefficients %>%
            mutate(
              basin = i_basin,
              era = i_era,
              gamma_slab = i_gamma_slab,
              model = i_lm,
              nr_obs = i_nr_obs,
              rmse = i_rmse,
              aic = i_aic,
              resid_max = i_resid_max,
              n_predictors = i_n_predictors,
              na_predictor = anyNA(coefficients$estimate),
              cor_max = i_cor_max
            )
          
          if (exists("lm_all_fitted")) {
            lm_all_fitted <- bind_rows(lm_all_fitted, coefficients)
          }
          
          if (!exists("lm_all_fitted")) {
            lm_all_fitted <- coefficients
          }
        }
      }
    }
  }
}

rm(
  i_lm_fit,
  coefficients,
  i_rmse,
  GLODAP_basin_era,
  GLODAP_basin_era_slab,
  i_lm,
  i_basin,
  i_era,
  i_gamma_slab,
  i_nr_obs,
  i_predictors,
  i_aic,
  i_n_predictors,
  i_resid_max
)

5 Prepare coeffcients

Coefficients are prepared for the mapping of Cant and the chosen target variable.

5.1 Formatting

# select relevant columns
lm_all_fitted <- lm_all_fitted %>%
  select(
    basin,
    gamma_slab,
    era,
    model,
    nr_obs,
    n_predictors,
    term,
    estimate,
    rmse,
    aic,
    resid_max,
    na_predictor,
    cor_max
  )

# set coefficient to zero if not fitted (=NA)
lm_all_fitted <- lm_all_fitted %>%
  mutate(estimate = if_else(is.na(estimate), 0, estimate))

# Prepare model coefficients for mapping of target variable
lm_all_fitted_wide <- lm_all_fitted %>%
  pivot_wider(
    values_from = estimate,
    names_from = term,
    names_prefix = "coeff_",
    values_fill = 0
  )

5.2 Predictor selection

Within each basin and slab, the following number of best linear regression models was selected:

  • 5

The criterion used to select the best models was:

  • aic

The criterion was summed up for two adjacent eras, and the models with lowest summed values were selected.

Please note, that currently the lm() function produces NAs for some predictors. It is not yet entirely clear when this happens, but presumably it is caused by some form of collinearity between predictors, such that including another predictor does not help to explain the target variable any better. The issues also expresses as exactly identical rmse values of different models. As an interim solution, models with fitted NA predictors were not included.

# remove models with predictors fitted as NA

lm_all_fitted_wide <- lm_all_fitted_wide %>%
  filter(na_predictor == FALSE)
# calculate RMSE sum for adjacent eras
lm_all_fitted_wide_eras <- lm_all_fitted_wide  %>%
  select(basin, gamma_slab, model, era, nr_obs, rmse, aic, resid_max) %>%
  arrange(era) %>%
  group_by(basin, gamma_slab, model) %>%
  mutate(
    eras = paste(lag(era), era, sep = " --> "),
    rmse_sum = rmse + lag(rmse),
    aic_sum = aic + lag(aic)
  ) %>%
  ungroup() %>%
  select(-c(era)) %>%
  drop_na()

# subset models with lowest summed criterion
# chose which criterion is applied

if (params_local$MLR_criterion == "aic") {
  lm_best <- lm_all_fitted_wide_eras %>%
    group_by(basin, gamma_slab, eras) %>%
    slice_min(order_by = aic_sum,
              with_ties = FALSE,
              n = params_local$MLR_number) %>%
    ungroup() %>%
    arrange(basin, gamma_slab, eras, model)
} else {
  lm_best <- lm_all_fitted_wide_eras %>%
    group_by(basin, gamma_slab, eras) %>%
    slice_min(order_by = rmse_sum,
              with_ties = FALSE,
              n = params_local$MLR_number) %>%
    ungroup() %>%
    arrange(basin, gamma_slab, eras, model)
}

5.3 RMSE tables

5.3.1 per model

lm_best %>%
  kable() %>%
  add_header_above() %>%
  kable_styling() %>%
  scroll_box(width = "100%", height = "400px")
basin gamma_slab model nr_obs rmse aic resid_max eras rmse_sum aic_sum
Atlantic (-Inf,26] cstar_tref ~ sal + aou + nitrate + phosphate_star 146 1.5497398 554.2515 6.779875 1982-1996 –> 1997-2008 3.2465650 1236.2594
Atlantic (-Inf,26] cstar_tref ~ sal + aou + phosphate + phosphate_star 146 1.0520163 441.1370 4.374551 1982-1996 –> 1997-2008 2.4166632 1048.1999
Atlantic (-Inf,26] cstar_tref ~ sal + aou + silicate + phosphate + phosphate_star 146 1.0518302 443.0853 4.400153 1982-1996 –> 1997-2008 2.4151224 1051.8066
Atlantic (-Inf,26] cstar_tref ~ temp + aou + phosphate + phosphate_star 146 1.4666454 538.1596 7.367948 1982-1996 –> 1997-2008 3.1957722 1226.6545
Atlantic (-Inf,26] cstar_tref ~ temp + aou + silicate + phosphate + phosphate_star 146 1.4638268 539.5978 7.187528 1982-1996 –> 1997-2008 3.1924621 1229.9950
Atlantic (-Inf,26] cstar_tref ~ sal + aou + phosphate + phosphate_star 120 1.1639689 388.9858 3.443761 1997-2008 –> 2009-2019 2.2159852 830.1228
Atlantic (-Inf,26] cstar_tref ~ sal + aou + silicate + phosphate + phosphate_star 120 1.1032974 378.1381 3.121374 1997-2008 –> 2009-2019 2.1551277 821.2234
Atlantic (-Inf,26] cstar_tref ~ sal + aou + silicate + phosphate_star 120 1.6504991 472.8039 4.220872 1997-2008 –> 2009-2019 3.1951574 1026.0964
Atlantic (-Inf,26] cstar_tref ~ temp + aou + phosphate + phosphate_star 120 1.5135931 452.0220 6.318368 1997-2008 –> 2009-2019 2.9802386 990.1815
Atlantic (-Inf,26] cstar_tref ~ temp + aou + silicate + phosphate + phosphate_star 120 1.4696627 446.9532 5.722394 1997-2008 –> 2009-2019 2.9334895 986.5510
Atlantic (26,26.5] cstar_tref ~ sal + aou + silicate + phosphate + phosphate_star 969 3.5045654 5194.2838 13.212095 1982-1996 –> 1997-2008 6.9766541 12037.9975
Atlantic (26,26.5] cstar_tref ~ temp + aou + nitrate + phosphate_star 969 4.1719459 5530.1083 10.383853 1982-1996 –> 1997-2008 8.3677529 12857.2624
Atlantic (26,26.5] cstar_tref ~ temp + aou + nitrate + silicate 969 4.0102833 5453.5172 11.933724 1982-1996 –> 1997-2008 8.1283216 12732.7020
Atlantic (26,26.5] cstar_tref ~ temp + aou + nitrate + silicate + phosphate_star 969 4.0011567 5451.1017 12.464976 1982-1996 –> 1997-2008 8.1155697 12730.0283
Atlantic (26,26.5] cstar_tref ~ temp + aou + silicate + phosphate + phosphate_star 969 4.2435626 5565.0942 13.044934 1982-1996 –> 1997-2008 8.5287394 12948.2875
Atlantic (26,26.5] cstar_tref ~ sal + aou + silicate + phosphate + phosphate_star 887 3.5766351 4792.0224 11.509131 1997-2008 –> 2009-2019 7.0812005 9986.3061
Atlantic (26,26.5] cstar_tref ~ temp + aou + nitrate + phosphate_star 887 4.1181347 5040.1171 12.061754 1997-2008 –> 2009-2019 8.2900807 10570.2255
Atlantic (26,26.5] cstar_tref ~ temp + aou + nitrate + silicate 887 3.9565691 4969.1162 16.433540 1997-2008 –> 2009-2019 7.9668524 10422.6334
Atlantic (26,26.5] cstar_tref ~ temp + aou + nitrate + silicate + phosphate_star 887 3.9408963 4964.0751 18.038103 1997-2008 –> 2009-2019 7.9420530 10415.1768
Atlantic (26,26.5] cstar_tref ~ temp + aou + silicate + phosphate + phosphate_star 887 4.2298592 5089.6042 11.623373 1997-2008 –> 2009-2019 8.4734218 10654.6984
Atlantic (26.5,26.75] cstar_tref ~ aou + silicate + phosphate + phosphate_star 1282 3.1608290 6600.8976 10.318355 1982-1996 –> 1997-2008 6.2543364 14665.3489
Atlantic (26.5,26.75] cstar_tref ~ sal + aou + silicate + phosphate 1282 3.1961002 6629.3505 10.049965 1982-1996 –> 1997-2008 6.3543361 14759.2392
Atlantic (26.5,26.75] cstar_tref ~ sal + aou + silicate + phosphate + phosphate_star 1282 3.1030255 6555.5746 10.376132 1982-1996 –> 1997-2008 6.1650156 14589.6660
Atlantic (26.5,26.75] cstar_tref ~ temp + aou + nitrate + silicate + phosphate_star 1282 3.1858367 6623.1036 10.059773 1982-1996 –> 1997-2008 6.3254869 14736.3413
Atlantic (26.5,26.75] cstar_tref ~ temp + aou + silicate + phosphate + phosphate_star 1282 3.0469927 6508.8521 9.480321 1982-1996 –> 1997-2008 6.0292890 14459.6095
Atlantic (26.5,26.75] cstar_tref ~ aou + silicate + phosphate + phosphate_star 1088 3.6028024 5888.6155 11.507716 1997-2008 –> 2009-2019 6.7636314 12489.5131
Atlantic (26.5,26.75] cstar_tref ~ sal + aou + silicate + phosphate 1088 3.5167576 5836.0161 11.179635 1997-2008 –> 2009-2019 6.7128578 12465.3665
Atlantic (26.5,26.75] cstar_tref ~ sal + aou + silicate + phosphate + phosphate_star 1088 3.4970317 5825.7763 11.382695 1997-2008 –> 2009-2019 6.6000572 12381.3509
Atlantic (26.5,26.75] cstar_tref ~ temp + aou + nitrate + silicate + phosphate_star 1088 3.5173399 5838.3763 9.303961 1997-2008 –> 2009-2019 6.7031766 12461.4799
Atlantic (26.5,26.75] cstar_tref ~ temp + aou + silicate + phosphate + phosphate_star 1088 3.4808595 5815.6899 10.801616 1997-2008 –> 2009-2019 6.5278523 12324.5420
Atlantic (26.75,27] cstar_tref ~ aou + silicate + phosphate + phosphate_star 2190 1.9895745 9240.0438 14.066373 1982-1996 –> 1997-2008 3.6463628 19282.8388
Atlantic (26.75,27] cstar_tref ~ sal + aou + silicate + phosphate + phosphate_star 2190 1.9034540 9048.2259 13.441245 1982-1996 –> 1997-2008 3.5437509 19040.8615
Atlantic (26.75,27] cstar_tref ~ temp + aou + nitrate + silicate + phosphate_star 2190 2.1022469 9483.3203 15.899876 1982-1996 –> 1997-2008 3.8820103 19901.4347
Atlantic (26.75,27] cstar_tref ~ temp + aou + silicate + phosphate 2190 2.0909073 9457.6305 14.567048 1982-1996 –> 1997-2008 3.8638648 19853.7680
Atlantic (26.75,27] cstar_tref ~ temp + aou + silicate + phosphate + phosphate_star 2190 1.9869981 9236.3682 17.584990 1982-1996 –> 1997-2008 3.4834060 18750.3079
Atlantic (26.75,27] cstar_tref ~ aou + silicate + phosphate + phosphate_star 2004 2.4497762 9290.2603 27.463653 1997-2008 –> 2009-2019 4.4393507 18530.3042
Atlantic (26.75,27] cstar_tref ~ sal + aou + silicate + phosphate 2004 2.4126150 9228.9963 24.703523 1997-2008 –> 2009-2019 4.5306803 18743.1504
Atlantic (26.75,27] cstar_tref ~ sal + aou + silicate + phosphate + phosphate_star 2004 2.3482362 9122.5930 25.940225 1997-2008 –> 2009-2019 4.2516902 18170.8189
Atlantic (26.75,27] cstar_tref ~ temp + aou + nitrate + silicate + phosphate_star 2004 2.5042136 9380.3485 23.426544 1997-2008 –> 2009-2019 4.6064605 18863.6687
Atlantic (26.75,27] cstar_tref ~ temp + aou + silicate + phosphate + phosphate_star 2004 2.1044039 8683.1870 22.765287 1997-2008 –> 2009-2019 4.0914020 17919.5552
Atlantic (27,27.25] cstar_tref ~ sal + aou + nitrate + silicate + phosphate_star 1894 2.0854736 8173.1038 10.811524 1982-1996 –> 1997-2008 4.3470262 17663.4620
Atlantic (27,27.25] cstar_tref ~ sal + aou + silicate + phosphate 1894 1.8615505 7740.8392 10.568580 1982-1996 –> 1997-2008 3.5664220 16031.1351
Atlantic (27,27.25] cstar_tref ~ sal + aou + silicate + phosphate + phosphate_star 1894 1.8207833 7658.9619 10.353334 1982-1996 –> 1997-2008 3.3668982 15536.8211
Atlantic (27,27.25] cstar_tref ~ temp + aou + nitrate + silicate + phosphate_star 1894 1.9989140 8012.5232 13.218031 1982-1996 –> 1997-2008 3.6404184 16144.2223
Atlantic (27,27.25] cstar_tref ~ temp + aou + silicate + phosphate + phosphate_star 1894 2.2543701 8468.0930 21.306001 1982-1996 –> 1997-2008 4.2867238 17505.3773
Atlantic (27,27.25] cstar_tref ~ sal + aou + nitrate + silicate + phosphate_star 1770 2.1957025 7821.2597 11.870716 1997-2008 –> 2009-2019 4.2811761 15994.3635
Atlantic (27,27.25] cstar_tref ~ sal + aou + silicate + phosphate 1770 2.1848856 7801.7771 13.569860 1997-2008 –> 2009-2019 4.0464361 15542.6163
Atlantic (27,27.25] cstar_tref ~ sal + aou + silicate + phosphate + phosphate_star 1770 2.1848757 7803.7610 13.557213 1997-2008 –> 2009-2019 4.0056590 15462.7228
Atlantic (27,27.25] cstar_tref ~ sal + aou + silicate + phosphate_star 1770 2.2804983 7953.3970 14.908620 1997-2008 –> 2009-2019 4.4090721 16201.9892
Atlantic (27,27.25] cstar_tref ~ temp + aou + nitrate + silicate + phosphate_star 1770 2.3928360 8125.6190 19.363213 1997-2008 –> 2009-2019 4.3917499 16138.1422
Atlantic (27.25,27.5] cstar_tref ~ sal + aou + nitrate + silicate 1904 2.4727827 8862.8683 12.792903 1982-1996 –> 1997-2008 5.1237765 20394.1857
Atlantic (27.25,27.5] cstar_tref ~ sal + aou + nitrate + silicate + phosphate_star 1904 2.3787934 8717.3056 12.935771 1982-1996 –> 1997-2008 4.9537934 20110.6657
Atlantic (27.25,27.5] cstar_tref ~ sal + aou + silicate + phosphate + phosphate_star 1904 2.5027529 8910.7439 20.150364 1982-1996 –> 1997-2008 4.6549157 19440.9456
Atlantic (27.25,27.5] cstar_tref ~ temp + aou + nitrate + silicate 1904 2.1576638 8343.7692 11.413683 1982-1996 –> 1997-2008 3.8586083 17739.7572
Atlantic (27.25,27.5] cstar_tref ~ temp + aou + nitrate + silicate + phosphate_star 1904 2.0464298 8144.2143 14.786810 1982-1996 –> 1997-2008 3.7467610 17540.4670
Atlantic (27.25,27.5] cstar_tref ~ aou + nitrate + silicate + phosphate_star 1702 2.9549498 8530.2384 21.650262 1997-2008 –> 2009-2019 5.5905647 17635.9520
Atlantic (27.25,27.5] cstar_tref ~ sal + aou + nitrate + silicate 1702 2.8677604 8428.2875 16.040376 1997-2008 –> 2009-2019 5.3405431 17291.1558
Atlantic (27.25,27.5] cstar_tref ~ sal + aou + nitrate + silicate + phosphate_star 1702 2.7136930 8242.3155 17.246937 1997-2008 –> 2009-2019 5.0924864 16959.6211
Atlantic (27.25,27.5] cstar_tref ~ temp + aou + nitrate + silicate 1702 3.0012510 8583.1622 11.700791 1997-2008 –> 2009-2019 5.1589148 16926.9314
Atlantic (27.25,27.5] cstar_tref ~ temp + aou + nitrate + silicate + phosphate_star 1702 2.7021751 8227.8369 17.252150 1997-2008 –> 2009-2019 4.7486049 16372.0512
Atlantic (27.5,27.75] cstar_tref ~ sal + aou + phosphate 2619 2.7198667 12683.4530 13.245897 1982-1996 –> 1997-2008 5.1778031 27038.8503
Atlantic (27.5,27.75] cstar_tref ~ sal + aou + phosphate + phosphate_star 2619 2.6994928 12646.0688 13.726300 1982-1996 –> 1997-2008 4.8882562 26285.7482
Atlantic (27.5,27.75] cstar_tref ~ sal + aou + silicate + phosphate 2619 2.4559246 12150.7605 13.466377 1982-1996 –> 1997-2008 4.8153784 26255.1177
Atlantic (27.5,27.75] cstar_tref ~ sal + aou + silicate + phosphate + phosphate_star 2619 2.3958748 12023.0944 14.280411 1982-1996 –> 1997-2008 4.4261967 25199.7926
Atlantic (27.5,27.75] cstar_tref ~ temp + aou + nitrate + silicate + phosphate_star 2619 3.0129659 13223.5209 15.600728 1982-1996 –> 1997-2008 5.2886409 27106.1609
Atlantic (27.5,27.75] cstar_tref ~ sal + aou + nitrate + silicate + phosphate_star 2340 3.1208758 11981.0043 15.244357 1997-2008 –> 2009-2019 5.8942753 24770.5511
Atlantic (27.5,27.75] cstar_tref ~ sal + aou + phosphate 2340 3.2193610 12122.4083 13.884231 1997-2008 –> 2009-2019 5.9392277 24805.8614
Atlantic (27.5,27.75] cstar_tref ~ sal + aou + phosphate + phosphate_star 2340 3.2193457 12124.3861 13.894909 1997-2008 –> 2009-2019 5.9188385 24770.4549
Atlantic (27.5,27.75] cstar_tref ~ sal + aou + silicate + phosphate 2340 2.7289817 11351.0180 14.950042 1997-2008 –> 2009-2019 5.1849064 23501.7784
Atlantic (27.5,27.75] cstar_tref ~ sal + aou + silicate + phosphate + phosphate_star 2340 2.7164500 11331.4775 14.798604 1997-2008 –> 2009-2019 5.1123248 23354.5718
Atlantic (27.75,27.85] cstar_tref ~ sal + aou + nitrate + silicate 900 1.9111538 3731.9623 13.337451 1982-1996 –> 1997-2008 3.9036933 8416.0625
Atlantic (27.75,27.85] cstar_tref ~ sal + aou + nitrate + silicate + phosphate_star 900 1.8506803 3676.0853 14.205377 1982-1996 –> 1997-2008 3.7915191 8303.9276
Atlantic (27.75,27.85] cstar_tref ~ sal + aou + phosphate + phosphate_star 900 1.8293894 3653.2574 12.560489 1982-1996 –> 1997-2008 3.5060474 7954.8596
Atlantic (27.75,27.85] cstar_tref ~ sal + aou + silicate + phosphate 900 1.7150314 3537.0658 12.330292 1982-1996 –> 1997-2008 3.5181722 7999.8322
Atlantic (27.75,27.85] cstar_tref ~ sal + aou + silicate + phosphate + phosphate_star 900 1.5104975 3310.4797 12.896290 1982-1996 –> 1997-2008 3.1107426 7510.7149
Atlantic (27.75,27.85] cstar_tref ~ sal + aou + nitrate + silicate 861 2.0091785 3656.8962 12.547977 1997-2008 –> 2009-2019 3.9203323 7388.8584
Atlantic (27.75,27.85] cstar_tref ~ sal + aou + nitrate + silicate + phosphate_star 861 1.9932243 3645.1678 12.962072 1997-2008 –> 2009-2019 3.8439046 7321.2531
Atlantic (27.75,27.85] cstar_tref ~ sal + aou + phosphate + phosphate_star 861 2.3474123 3924.8181 11.404366 1997-2008 –> 2009-2019 4.1768017 7578.0755
Atlantic (27.75,27.85] cstar_tref ~ sal + aou + silicate + phosphate 861 1.8364097 3502.0651 11.597744 1997-2008 –> 2009-2019 3.5514410 7039.1309
Atlantic (27.75,27.85] cstar_tref ~ sal + aou + silicate + phosphate + phosphate_star 861 1.7164355 3387.7222 11.994150 1997-2008 –> 2009-2019 3.2269330 6698.2019
Atlantic (27.85,27.95] cstar_tref ~ aou + silicate + phosphate + phosphate_star 903 2.9972679 4557.0513 32.447722 1982-1996 –> 1997-2008 6.0329251 10093.1877
Atlantic (27.85,27.95] cstar_tref ~ sal + aou + phosphate + phosphate_star 903 2.9997106 4558.5226 30.014544 1982-1996 –> 1997-2008 5.9054075 9999.0987
Atlantic (27.85,27.95] cstar_tref ~ sal + aou + silicate + phosphate + phosphate_star 903 2.9876304 4553.2349 27.632975 1982-1996 –> 1997-2008 5.8926069 9995.2695
Atlantic (27.85,27.95] cstar_tref ~ temp + aou + phosphate + phosphate_star 903 2.7117956 4376.2884 21.731416 1982-1996 –> 1997-2008 5.7854493 9939.5917
Atlantic (27.85,27.95] cstar_tref ~ temp + aou + silicate + phosphate + phosphate_star 903 2.6989057 4369.6836 21.521888 1982-1996 –> 1997-2008 5.7193921 9896.8780
Atlantic (27.85,27.95] cstar_tref ~ aou + silicate + phosphate + phosphate_star 893 3.6388755 4853.1553 24.564776 1997-2008 –> 2009-2019 6.6361435 9410.2066
Atlantic (27.85,27.95] cstar_tref ~ sal + aou + phosphate + phosphate_star 893 3.2764028 4665.7528 31.808520 1997-2008 –> 2009-2019 6.2761134 9224.2753
Atlantic (27.85,27.95] cstar_tref ~ sal + aou + silicate + phosphate + phosphate_star 893 3.2010827 4626.2158 30.563544 1997-2008 –> 2009-2019 6.1887131 9179.4507
Atlantic (27.85,27.95] cstar_tref ~ temp + aou + phosphate + phosphate_star 893 3.5763422 4822.1964 23.280568 1997-2008 –> 2009-2019 6.2881378 9198.4849
Atlantic (27.85,27.95] cstar_tref ~ temp + aou + silicate + phosphate + phosphate_star 893 3.5520614 4812.0294 24.376118 1997-2008 –> 2009-2019 6.2509671 9181.7130
Atlantic (27.95,28.05] cstar_tref ~ sal + aou + phosphate + phosphate_star 1098 4.8642380 6601.8635 25.792846 1982-1996 –> 1997-2008 9.6052740 14920.6058
Atlantic (27.95,28.05] cstar_tref ~ sal + aou + silicate + phosphate + phosphate_star 1098 4.7748519 6563.1341 24.911954 1982-1996 –> 1997-2008 9.4330465 14834.6597
Atlantic (27.95,28.05] cstar_tref ~ temp + aou + nitrate + phosphate_star 1098 4.2153808 6287.4619 22.348711 1982-1996 –> 1997-2008 8.2330503 14143.9783
Atlantic (27.95,28.05] cstar_tref ~ temp + aou + nitrate + silicate + phosphate_star 1098 3.9443873 6143.5458 26.307254 1982-1996 –> 1997-2008 7.5172695 13674.4786
Atlantic (27.95,28.05] cstar_tref ~ temp + aou + silicate + phosphate + phosphate_star 1098 4.7747944 6563.1076 21.520605 1982-1996 –> 1997-2008 9.5363197 14895.8900
Atlantic (27.95,28.05] cstar_tref ~ sal + aou + phosphate + phosphate_star 1052 4.3783749 6104.3764 24.778686 1997-2008 –> 2009-2019 9.2426129 12706.2399
Atlantic (27.95,28.05] cstar_tref ~ sal + aou + silicate + phosphate + phosphate_star 1052 4.3189470 6077.6231 24.715518 1997-2008 –> 2009-2019 9.0937988 12640.7572
Atlantic (27.95,28.05] cstar_tref ~ temp + aou + nitrate + phosphate_star 1052 3.8344411 5825.2725 22.665961 1997-2008 –> 2009-2019 8.0498219 12112.7344
Atlantic (27.95,28.05] cstar_tref ~ temp + aou + nitrate + silicate + phosphate_star 1052 3.4529907 5606.8092 27.139851 1997-2008 –> 2009-2019 7.3973780 11750.3550
Atlantic (27.95,28.05] cstar_tref ~ temp + aou + silicate + phosphate + phosphate_star 1052 4.4232551 6127.8335 23.229057 1997-2008 –> 2009-2019 9.1980495 12690.9412
Atlantic (28.05,28.1] cstar_tref ~ aou + silicate + phosphate + phosphate_star 743 1.1729477 2357.5893 10.038524 1982-1996 –> 1997-2008 2.0942163 4770.7245
Atlantic (28.05,28.1] cstar_tref ~ sal + aou + phosphate + phosphate_star 743 1.0406554 2179.7607 6.731081 1982-1996 –> 1997-2008 1.9087851 4486.1947
Atlantic (28.05,28.1] cstar_tref ~ sal + aou + silicate + phosphate + phosphate_star 743 1.0156908 2145.6782 5.795841 1982-1996 –> 1997-2008 1.8831344 4452.6919
Atlantic (28.05,28.1] cstar_tref ~ temp + aou + phosphate + phosphate_star 743 1.1252912 2295.9529 10.212504 1982-1996 –> 1997-2008 2.0347955 4686.0058
Atlantic (28.05,28.1] cstar_tref ~ temp + aou + silicate + phosphate + phosphate_star 743 1.0468957 2190.6450 11.352439 1982-1996 –> 1997-2008 1.8733036 4410.6209
Atlantic (28.05,28.1] cstar_tref ~ sal + aou + nitrate + silicate + phosphate_star 673 1.1480158 2109.6865 8.049134 1997-2008 –> 2009-2019 2.2645459 4396.0246
Atlantic (28.05,28.1] cstar_tref ~ sal + aou + phosphate + phosphate_star 673 1.0731011 2016.8552 9.691677 1997-2008 –> 2009-2019 2.1137565 4196.6159
Atlantic (28.05,28.1] cstar_tref ~ sal + aou + silicate + phosphate + phosphate_star 673 1.0390706 1975.4790 8.643193 1997-2008 –> 2009-2019 2.0547614 4121.1571
Atlantic (28.05,28.1] cstar_tref ~ temp + aou + phosphate + phosphate_star 673 1.0632974 2004.5018 13.201907 1997-2008 –> 2009-2019 2.1885886 4300.4547
Atlantic (28.05,28.1] cstar_tref ~ temp + aou + silicate + phosphate + phosphate_star 673 1.0029755 1927.8904 13.995196 1997-2008 –> 2009-2019 2.0498712 4118.5354
Atlantic (28.1,28.15] cstar_tref ~ aou + silicate + phosphate + phosphate_star 867 0.8382734 2166.5429 9.188588 1982-1996 –> 1997-2008 1.5154137 4423.9556
Atlantic (28.1,28.15] cstar_tref ~ sal + aou + nitrate + silicate + phosphate_star 867 0.8178349 2125.7410 5.793449 1982-1996 –> 1997-2008 1.5088889 4429.5345
Atlantic (28.1,28.15] cstar_tref ~ sal + aou + phosphate + phosphate_star 867 0.7446359 1961.1524 5.319070 1982-1996 –> 1997-2008 1.4077145 4172.7760
Atlantic (28.1,28.15] cstar_tref ~ sal + aou + silicate + phosphate + phosphate_star 867 0.7236954 1913.6904 5.240222 1982-1996 –> 1997-2008 1.3447242 3984.3579
Atlantic (28.1,28.15] cstar_tref ~ temp + aou + silicate + phosphate + phosphate_star 867 0.7559212 1989.2348 9.303963 1982-1996 –> 1997-2008 1.3432304 3938.0897
Atlantic (28.1,28.15] cstar_tref ~ sal + aou + nitrate + silicate + phosphate_star 770 0.8961317 2030.2768 7.973080 1997-2008 –> 2009-2019 1.7139666 4156.0178
Atlantic (28.1,28.15] cstar_tref ~ sal + aou + phosphate + phosphate_star 770 0.8166830 1885.3088 7.028213 1997-2008 –> 2009-2019 1.5613190 3846.4613
Atlantic (28.1,28.15] cstar_tref ~ sal + aou + silicate + phosphate + phosphate_star 770 0.8154600 1885.0009 7.017951 1997-2008 –> 2009-2019 1.5391554 3798.6912
Atlantic (28.1,28.15] cstar_tref ~ temp + aou + phosphate + phosphate_star 770 0.8766659 1994.4562 11.848627 1997-2008 –> 2009-2019 1.7185636 4168.4799
Atlantic (28.1,28.15] cstar_tref ~ temp + aou + silicate + phosphate + phosphate_star 770 0.7933963 1842.7593 12.250467 1997-2008 –> 2009-2019 1.5493175 3831.9942
Atlantic (28.15,28.2] cstar_tref ~ sal + aou + nitrate + phosphate_star 1407 0.5841786 2492.2314 1.980710 1982-1996 –> 1997-2008 1.1040213 5376.4806
Atlantic (28.15,28.2] cstar_tref ~ sal + aou + nitrate + silicate + phosphate_star 1407 0.5391101 2268.3040 1.963077 1982-1996 –> 1997-2008 1.0448435 5051.2003
Atlantic (28.15,28.2] cstar_tref ~ temp + aou + nitrate + phosphate_star 1407 0.5882267 2511.6642 2.095192 1982-1996 –> 1997-2008 1.1391407 5613.9582
Atlantic (28.15,28.2] cstar_tref ~ temp + aou + nitrate + silicate 1407 0.5601250 2373.9120 2.108705 1982-1996 –> 1997-2008 1.0988386 5392.0914
Atlantic (28.15,28.2] cstar_tref ~ temp + aou + nitrate + silicate + phosphate_star 1407 0.5482794 2315.7626 2.225938 1982-1996 –> 1997-2008 1.0867809 5334.4632
Atlantic (28.15,28.2] cstar_tref ~ sal + aou + nitrate + phosphate_star 1298 0.7148302 2824.0606 5.571969 1997-2008 –> 2009-2019 1.2990088 5316.2921
Atlantic (28.15,28.2] cstar_tref ~ sal + aou + nitrate + silicate + phosphate_star 1298 0.7054925 2791.9262 6.356481 1997-2008 –> 2009-2019 1.2446026 5060.2302
Atlantic (28.15,28.2] cstar_tref ~ temp + aou + nitrate + phosphate_star 1298 0.8189368 3177.0178 9.752451 1997-2008 –> 2009-2019 1.4071636 5688.6820
Atlantic (28.15,28.2] cstar_tref ~ temp + aou + nitrate + silicate 1298 0.8075260 3140.5916 10.459046 1997-2008 –> 2009-2019 1.3676511 5514.5036
Atlantic (28.15,28.2] cstar_tref ~ temp + aou + nitrate + silicate + phosphate_star 1298 0.8075158 3142.5587 10.484177 1997-2008 –> 2009-2019 1.3557952 5458.3212
Atlantic (28.2, Inf] cstar_tref ~ sal + aou + nitrate 2510 0.3533001 1910.0753 3.547623 1982-1996 –> 1997-2008 0.6466399 3111.7423
Atlantic (28.2, Inf] cstar_tref ~ sal + aou + nitrate + phosphate_star 2510 0.3453344 1797.5970 2.232031 1982-1996 –> 1997-2008 0.6362008 2948.8481
Atlantic (28.2, Inf] cstar_tref ~ sal + aou + nitrate + silicate 2510 0.3509029 1877.8972 2.649311 1982-1996 –> 1997-2008 0.6439100 3074.5405
Atlantic (28.2, Inf] cstar_tref ~ sal + aou + nitrate + silicate + phosphate_star 2510 0.3408894 1734.5610 2.978453 1982-1996 –> 1997-2008 0.6271391 2788.7779
Atlantic (28.2, Inf] cstar_tref ~ temp + aou + nitrate + silicate + phosphate_star 2510 0.5649587 4270.6385 11.792191 1982-1996 –> 1997-2008 0.9856043 7707.5468
Atlantic (28.2, Inf] cstar_tref ~ sal + aou + nitrate 2356 0.4048932 2435.7681 2.383068 1997-2008 –> 2009-2019 0.7581932 4345.8435
Atlantic (28.2, Inf] cstar_tref ~ sal + aou + nitrate + phosphate_star 2356 0.3912592 2276.3681 2.329236 1997-2008 –> 2009-2019 0.7365936 4073.9651
Atlantic (28.2, Inf] cstar_tref ~ sal + aou + nitrate + silicate 2356 0.4002060 2382.9022 2.376657 1997-2008 –> 2009-2019 0.7511088 4260.7994
Atlantic (28.2, Inf] cstar_tref ~ sal + aou + nitrate + silicate + phosphate_star 2356 0.3839474 2189.4776 2.545602 1997-2008 –> 2009-2019 0.7248368 3924.0386
Atlantic (28.2, Inf] cstar_tref ~ sal + nitrate + silicate + phosphate_star 2356 0.6313333 4530.8893 4.749645 1997-2008 –> 2009-2019 1.2229465 9030.9511
Indo-Pacific (-Inf,26] cstar_tref ~ sal + aou + phosphate + phosphate_star 4824 6.3385719 31518.4319 30.385002 1982-1996 –> 1997-2008 12.8627112 71156.0472
Indo-Pacific (-Inf,26] cstar_tref ~ sal + aou + silicate + phosphate + phosphate_star 4824 6.2932572 31451.2102 29.922107 1982-1996 –> 1997-2008 12.7665016 70996.6271
Indo-Pacific (-Inf,26] cstar_tref ~ temp + aou + nitrate + silicate + phosphate_star 4824 7.3048692 32889.3639 31.801896 1982-1996 –> 1997-2008 14.8115373 74216.2993
Indo-Pacific (-Inf,26] cstar_tref ~ temp + aou + silicate + phosphate + phosphate_star 4824 7.3875765 32997.9868 29.636700 1982-1996 –> 1997-2008 14.9511779 74415.8026
Indo-Pacific (-Inf,26] cstar_tref ~ temp + silicate + phosphate + phosphate_star 4824 7.5000916 33141.8211 28.899363 1982-1996 –> 1997-2008 15.1894006 74755.9001
Indo-Pacific (-Inf,26] cstar_tref ~ sal + aou + phosphate + phosphate_star 4459 6.0310286 28691.0048 24.778598 1997-2008 –> 2009-2019 12.3696005 60209.4367
Indo-Pacific (-Inf,26] cstar_tref ~ sal + aou + silicate + phosphate + phosphate_star 4459 5.9692539 28601.1884 24.098032 1997-2008 –> 2009-2019 12.2625112 60052.3986
Indo-Pacific (-Inf,26] cstar_tref ~ temp + aou + nitrate + silicate + phosphate_star 4459 7.0467156 30081.0385 25.923585 1997-2008 –> 2009-2019 14.3515848 62970.4024
Indo-Pacific (-Inf,26] cstar_tref ~ temp + aou + silicate + phosphate + phosphate_star 4459 7.1134116 30165.0489 25.398300 1997-2008 –> 2009-2019 14.5009881 63163.0357
Indo-Pacific (-Inf,26] cstar_tref ~ temp + silicate + phosphate + phosphate_star 4459 7.2315127 30309.8953 24.429455 1997-2008 –> 2009-2019 14.7316043 63451.7164
Indo-Pacific (26,26.5] cstar_tref ~ aou + silicate + phosphate + phosphate_star 5084 4.7301243 30240.3457 41.005350 1982-1996 –> 1997-2008 9.4013419 68482.4127
Indo-Pacific (26,26.5] cstar_tref ~ sal + aou + silicate + phosphate + phosphate_star 5084 4.3880526 29479.0751 43.823154 1982-1996 –> 1997-2008 8.6484228 66534.2313
Indo-Pacific (26,26.5] cstar_tref ~ temp + aou + nitrate + silicate + phosphate_star 5084 4.5942393 29945.9658 48.673491 1982-1996 –> 1997-2008 9.0172947 67485.0701
Indo-Pacific (26,26.5] cstar_tref ~ temp + aou + silicate + phosphate 5084 4.7363470 30253.7134 39.273930 1982-1996 –> 1997-2008 9.3794473 68417.8128
Indo-Pacific (26,26.5] cstar_tref ~ temp + aou + silicate + phosphate + phosphate_star 5084 4.7228399 30226.6748 40.410257 1982-1996 –> 1997-2008 9.3658890 68392.6319
Indo-Pacific (26,26.5] cstar_tref ~ aou + silicate + phosphate + phosphate_star 4614 4.9091889 27788.7162 41.959096 1997-2008 –> 2009-2019 9.6393132 58029.0619
Indo-Pacific (26,26.5] cstar_tref ~ sal + aou + silicate + phosphate + phosphate_star 4614 4.5485519 27086.6215 45.085074 1997-2008 –> 2009-2019 8.9366045 56565.6965
Indo-Pacific (26,26.5] cstar_tref ~ temp + aou + nitrate + silicate + phosphate_star 4614 4.7038052 27396.3397 47.887037 1997-2008 –> 2009-2019 9.2980445 57342.3056
Indo-Pacific (26,26.5] cstar_tref ~ temp + aou + silicate + phosphate 4614 4.8959995 27763.8901 40.766362 1997-2008 –> 2009-2019 9.6323465 58017.6035
Indo-Pacific (26,26.5] cstar_tref ~ temp + aou + silicate + phosphate + phosphate_star 4614 4.8929016 27760.0494 41.227023 1997-2008 –> 2009-2019 9.6157415 57986.7242
Indo-Pacific (26.5,26.75] cstar_tref ~ aou + silicate + phosphate + phosphate_star 4197 3.9975331 23553.9466 21.220619 1982-1996 –> 1997-2008 7.9285007 52815.7974
Indo-Pacific (26.5,26.75] cstar_tref ~ sal + aou + phosphate + phosphate_star 4197 4.1713234 23911.1607 17.248494 1982-1996 –> 1997-2008 8.0563088 53049.5587
Indo-Pacific (26.5,26.75] cstar_tref ~ sal + aou + silicate + phosphate + phosphate_star 4197 3.9090256 23368.0107 19.168907 1982-1996 –> 1997-2008 7.6163424 52017.2691
Indo-Pacific (26.5,26.75] cstar_tref ~ temp + aou + nitrate + silicate + phosphate_star 4197 4.0055015 23572.6619 31.979471 1982-1996 –> 1997-2008 7.9789008 52949.1587
Indo-Pacific (26.5,26.75] cstar_tref ~ temp + aou + silicate + phosphate + phosphate_star 4197 3.9282075 23409.0999 19.456795 1982-1996 –> 1997-2008 7.7789454 52456.5973
Indo-Pacific (26.5,26.75] cstar_tref ~ aou + silicate + phosphate + phosphate_star 3836 4.3185308 22121.5823 25.159708 1997-2008 –> 2009-2019 8.3160640 45675.5289
Indo-Pacific (26.5,26.75] cstar_tref ~ sal + aou + silicate + phosphate + phosphate_star 3836 4.1788159 21871.2707 25.715301 1997-2008 –> 2009-2019 8.0878415 45239.2815
Indo-Pacific (26.5,26.75] cstar_tref ~ temp + aou + nitrate + silicate + phosphate_star 3836 4.2292460 21963.3024 33.372085 1997-2008 –> 2009-2019 8.2347475 45535.9643
Indo-Pacific (26.5,26.75] cstar_tref ~ temp + aou + silicate + phosphate + phosphate_star 3836 4.1844077 21881.5300 23.557925 1997-2008 –> 2009-2019 8.1126152 45290.6300
Indo-Pacific (26.5,26.75] cstar_tref ~ temp + nitrate + silicate + phosphate_star 3836 4.2320442 21966.3768 34.676735 1997-2008 –> 2009-2019 8.2384042 45538.8375
Indo-Pacific (26.75,27] cstar_tref ~ aou + silicate + phosphate + phosphate_star 4851 4.3904399 28131.9660 18.713225 1982-1996 –> 1997-2008 8.3449386 63245.1733
Indo-Pacific (26.75,27] cstar_tref ~ sal + aou + phosphate + phosphate_star 4851 4.1417105 27566.1399 21.820850 1982-1996 –> 1997-2008 7.7895020 61665.0314
Indo-Pacific (26.75,27] cstar_tref ~ sal + aou + silicate + phosphate + phosphate_star 4851 4.1277332 27535.3425 20.917441 1982-1996 –> 1997-2008 7.7607256 61585.1581
Indo-Pacific (26.75,27] cstar_tref ~ temp + aou + phosphate + phosphate_star 4851 4.0577816 27367.5163 19.648084 1982-1996 –> 1997-2008 7.7044680 61462.6008
Indo-Pacific (26.75,27] cstar_tref ~ temp + aou + silicate + phosphate + phosphate_star 4851 4.0252512 27291.4238 18.015644 1982-1996 –> 1997-2008 7.6447605 61294.5241
Indo-Pacific (26.75,27] cstar_tref ~ aou + silicate + phosphate + phosphate_star 4620 4.8346391 27683.4439 18.928175 1997-2008 –> 2009-2019 9.2250790 55815.4100
Indo-Pacific (26.75,27] cstar_tref ~ sal + aou + phosphate + phosphate_star 4620 4.6186014 27261.0415 21.294506 1997-2008 –> 2009-2019 8.7603119 54827.1815
Indo-Pacific (26.75,27] cstar_tref ~ sal + aou + silicate + phosphate + phosphate_star 4620 4.6042741 27234.3336 20.417790 1997-2008 –> 2009-2019 8.7320072 54769.6761
Indo-Pacific (26.75,27] cstar_tref ~ temp + aou + phosphate + phosphate_star 4620 4.5195678 27060.7592 22.587891 1997-2008 –> 2009-2019 8.5773494 54428.2755
Indo-Pacific (26.75,27] cstar_tref ~ temp + aou + silicate + phosphate + phosphate_star 4620 4.4910489 27004.2693 21.096126 1997-2008 –> 2009-2019 8.5163001 54295.6930
Indo-Pacific (27,27.25] cstar_tref ~ sal + aou + silicate + phosphate + phosphate_star 6051 4.2305928 34641.2186 38.987956 1982-1996 –> 1997-2008 7.6898959 73778.5820
Indo-Pacific (27,27.25] cstar_tref ~ temp + aou + nitrate + silicate + phosphate_star 6051 4.0079275 33986.8895 48.292564 1982-1996 –> 1997-2008 7.2653220 72239.7211
Indo-Pacific (27,27.25] cstar_tref ~ temp + aou + phosphate + phosphate_star 6051 4.2520624 34700.4788 43.293651 1982-1996 –> 1997-2008 7.7371725 73945.1595
Indo-Pacific (27,27.25] cstar_tref ~ temp + aou + silicate + phosphate + phosphate_star 6051 3.8421055 33475.5346 28.263619 1982-1996 –> 1997-2008 7.0506832 71506.2768
Indo-Pacific (27,27.25] cstar_tref ~ temp + nitrate + silicate + phosphate_star 6051 4.4688453 35302.2621 70.598421 1982-1996 –> 1997-2008 7.8137708 73943.1026
Indo-Pacific (27,27.25] cstar_tref ~ aou + silicate + phosphate + phosphate_star 5368 4.9996749 32523.9515 33.137375 1997-2008 –> 2009-2019 9.2875410 67325.9063
Indo-Pacific (27,27.25] cstar_tref ~ sal + aou + silicate + phosphate + phosphate_star 5368 4.9630411 32446.9967 35.215683 1997-2008 –> 2009-2019 9.1936339 67088.2152
Indo-Pacific (27,27.25] cstar_tref ~ temp + aou + nitrate + silicate + phosphate_star 5368 4.8065903 32103.1149 38.756934 1997-2008 –> 2009-2019 8.8145179 66090.0044
Indo-Pacific (27,27.25] cstar_tref ~ temp + aou + phosphate + phosphate_star 5368 4.9677680 32455.2170 41.181662 1997-2008 –> 2009-2019 9.2198304 67155.6958
Indo-Pacific (27,27.25] cstar_tref ~ temp + aou + silicate + phosphate + phosphate_star 5368 4.3759429 31095.3701 26.859631 1997-2008 –> 2009-2019 8.2180484 64570.9047
Indo-Pacific (27.25,27.5] cstar_tref ~ sal + aou + nitrate + silicate + phosphate_star 5356 3.3508041 28166.6235 31.725692 1982-1996 –> 1997-2008 6.2193149 60697.0434
Indo-Pacific (27.25,27.5] cstar_tref ~ sal + aou + silicate + phosphate + phosphate_star 5356 3.5855384 28891.9148 31.557514 1982-1996 –> 1997-2008 6.5918168 62039.1998
Indo-Pacific (27.25,27.5] cstar_tref ~ sal + aou + silicate + phosphate_star 5356 3.6026641 28940.9572 31.009468 1982-1996 –> 1997-2008 6.6089873 62086.4381
Indo-Pacific (27.25,27.5] cstar_tref ~ temp + aou + nitrate + silicate + phosphate_star 5356 3.5425511 28762.7118 32.702786 1982-1996 –> 1997-2008 6.5699892 62002.2289
Indo-Pacific (27.25,27.5] cstar_tref ~ temp + aou + silicate + phosphate + phosphate_star 5356 3.2822506 27945.1958 32.907034 1982-1996 –> 1997-2008 6.1446823 60447.7179
Indo-Pacific (27.25,27.5] cstar_tref ~ sal + aou + nitrate + silicate + phosphate_star 4935 3.7984566 27191.3742 30.763268 1997-2008 –> 2009-2019 7.1492606 55357.9977
Indo-Pacific (27.25,27.5] cstar_tref ~ sal + aou + silicate + phosphate + phosphate_star 4935 4.1106150 27970.8855 32.033024 1997-2008 –> 2009-2019 7.6961534 56862.8003
Indo-Pacific (27.25,27.5] cstar_tref ~ sal + aou + silicate + phosphate_star 4935 4.1456000 28052.5325 30.395240 1997-2008 –> 2009-2019 7.7482641 56993.4897
Indo-Pacific (27.25,27.5] cstar_tref ~ temp + aou + nitrate + silicate + phosphate_star 4935 4.0646343 27859.8589 30.502849 1997-2008 –> 2009-2019 7.6071854 56622.5708
Indo-Pacific (27.25,27.5] cstar_tref ~ temp + aou + silicate + phosphate + phosphate_star 4935 3.6825512 26885.5122 32.539426 1997-2008 –> 2009-2019 6.9648017 54830.7080
Indo-Pacific (27.5,27.75] cstar_tref ~ sal + aou + nitrate + silicate + phosphate_star 5404 3.0139376 27273.7857 30.484892 1982-1996 –> 1997-2008 5.2553883 57406.4016
Indo-Pacific (27.5,27.75] cstar_tref ~ sal + aou + silicate + phosphate + phosphate_star 5404 3.0005119 27225.5333 32.159061 1982-1996 –> 1997-2008 5.2675720 57511.8586
Indo-Pacific (27.5,27.75] cstar_tref ~ sal + aou + silicate + phosphate_star 5404 3.1022166 27583.8070 29.657836 1982-1996 –> 1997-2008 5.3877529 57977.9528
Indo-Pacific (27.5,27.75] cstar_tref ~ sal + nitrate + silicate + phosphate_star 5404 3.1540479 27762.8931 29.786246 1982-1996 –> 1997-2008 5.4655826 58310.0770
Indo-Pacific (27.5,27.75] cstar_tref ~ sal + silicate + phosphate + phosphate_star 5404 3.1465773 27737.2632 29.021158 1982-1996 –> 1997-2008 5.4483392 58227.1230
Indo-Pacific (27.5,27.75] cstar_tref ~ sal + aou + nitrate + silicate + phosphate_star 4876 3.8360163 26962.4128 26.671827 1997-2008 –> 2009-2019 6.8499539 54236.1985
Indo-Pacific (27.5,27.75] cstar_tref ~ sal + aou + silicate + phosphate + phosphate_star 4876 3.7213482 26666.4554 10.513159 1997-2008 –> 2009-2019 6.7218601 53891.9887
Indo-Pacific (27.5,27.75] cstar_tref ~ sal + aou + silicate + phosphate_star 4876 3.9928783 27351.2531 24.983842 1997-2008 –> 2009-2019 7.0950949 54935.0601
Indo-Pacific (27.5,27.75] cstar_tref ~ sal + nitrate + silicate + phosphate_star 4876 3.9962227 27359.4179 32.475641 1997-2008 –> 2009-2019 7.1502706 55122.3110
Indo-Pacific (27.5,27.75] cstar_tref ~ temp + aou + silicate + phosphate + phosphate_star 4876 3.9296820 27197.6711 19.536419 1997-2008 –> 2009-2019 7.0690291 54912.0714
Indo-Pacific (27.75,27.85] cstar_tref ~ aou + silicate + phosphate + phosphate_star 2094 2.6281235 10001.2537 20.315850 1982-1996 –> 1997-2008 4.4758882 20551.8859
Indo-Pacific (27.75,27.85] cstar_tref ~ sal + aou + silicate + phosphate + phosphate_star 2094 2.6280726 10003.1726 20.269819 1982-1996 –> 1997-2008 4.4588982 20508.0622
Indo-Pacific (27.75,27.85] cstar_tref ~ temp + aou + nitrate + silicate + phosphate_star 2094 2.6308738 10007.6341 20.381031 1982-1996 –> 1997-2008 4.4838926 20574.9863
Indo-Pacific (27.75,27.85] cstar_tref ~ temp + aou + silicate + phosphate 2094 2.6381137 10017.1432 19.942730 1982-1996 –> 1997-2008 4.4989867 20604.4218
Indo-Pacific (27.75,27.85] cstar_tref ~ temp + aou + silicate + phosphate + phosphate_star 2094 2.5477803 9873.2264 20.283242 1982-1996 –> 1997-2008 4.3766509 20372.5776
Indo-Pacific (27.75,27.85] cstar_tref ~ sal + aou + nitrate + silicate + phosphate_star 2026 2.9681471 10171.8633 31.686491 1997-2008 –> 2009-2019 5.6042834 20187.8663
Indo-Pacific (27.75,27.85] cstar_tref ~ sal + aou + silicate + phosphate + phosphate_star 2026 3.0026006 10218.6269 30.980275 1997-2008 –> 2009-2019 5.6306731 20221.7995
Indo-Pacific (27.75,27.85] cstar_tref ~ sal + nitrate + silicate + phosphate_star 2026 2.9867207 10195.1402 28.760017 1997-2008 –> 2009-2019 5.6233457 20209.9195
Indo-Pacific (27.75,27.85] cstar_tref ~ temp + aou + phosphate + phosphate_star 2026 2.9577599 10155.6582 31.706119 1997-2008 –> 2009-2019 5.6098592 20194.9449
Indo-Pacific (27.75,27.85] cstar_tref ~ temp + aou + silicate + phosphate + phosphate_star 2026 2.9108359 10092.8590 29.031327 1997-2008 –> 2009-2019 5.4586162 19966.0854
Indo-Pacific (27.85,27.95] cstar_tref ~ temp + aou + nitrate + phosphate_star 2613 2.6666131 12553.0814 27.978031 1982-1996 –> 1997-2008 4.8253084 27275.7924
Indo-Pacific (27.85,27.95] cstar_tref ~ temp + aou + nitrate + silicate 2613 2.6730626 12565.7058 28.004716 1982-1996 –> 1997-2008 4.8934547 27477.8411
Indo-Pacific (27.85,27.95] cstar_tref ~ temp + aou + nitrate + silicate + phosphate_star 2613 2.6631932 12548.3748 27.690692 1982-1996 –> 1997-2008 4.8210526 27270.4824
Indo-Pacific (27.85,27.95] cstar_tref ~ temp + nitrate + phosphate_star 2613 2.6858774 12588.6997 31.246516 1982-1996 –> 1997-2008 4.8531973 27336.2134
Indo-Pacific (27.85,27.95] cstar_tref ~ temp + nitrate + silicate + phosphate_star 2613 2.6801210 12579.4874 30.642253 1982-1996 –> 1997-2008 4.8469152 27327.3701
Indo-Pacific (27.85,27.95] cstar_tref ~ temp + aou + nitrate + phosphate_star 2485 2.9891703 12506.2540 34.512839 1997-2008 –> 2009-2019 5.6557834 25059.3354
Indo-Pacific (27.85,27.95] cstar_tref ~ temp + aou + nitrate + silicate 2485 2.9841143 12497.8404 33.884360 1997-2008 –> 2009-2019 5.6571769 25063.5462
Indo-Pacific (27.85,27.95] cstar_tref ~ temp + aou + nitrate + silicate + phosphate_star 2485 2.9784354 12490.3733 34.058594 1997-2008 –> 2009-2019 5.6416286 25038.7481
Indo-Pacific (27.85,27.95] cstar_tref ~ temp + aou + silicate + phosphate + phosphate_star 2485 2.9350011 12417.3624 38.832321 1997-2008 –> 2009-2019 5.6494671 25065.3939
Indo-Pacific (27.85,27.95] cstar_tref ~ temp + nitrate + silicate + phosphate_star 2485 2.9786599 12488.7479 33.688880 1997-2008 –> 2009-2019 5.6587810 25068.2352
Indo-Pacific (27.95,28.05] cstar_tref ~ aou + silicate + phosphate + phosphate_star 2262 2.1747367 9946.0079 8.214049 1982-1996 –> 1997-2008 4.0766303 22250.3913
Indo-Pacific (27.95,28.05] cstar_tref ~ sal + aou + silicate + phosphate + phosphate_star 2262 2.1336211 9861.6582 8.412054 1982-1996 –> 1997-2008 4.0059512 22074.6391
Indo-Pacific (27.95,28.05] cstar_tref ~ temp + aou + nitrate + silicate + phosphate_star 2262 2.1809880 9960.9936 8.079286 1982-1996 –> 1997-2008 4.0956826 22307.3706
Indo-Pacific (27.95,28.05] cstar_tref ~ temp + aou + silicate + phosphate 2262 2.1885477 9974.6474 8.264438 1982-1996 –> 1997-2008 4.1009138 22311.7697
Indo-Pacific (27.95,28.05] cstar_tref ~ temp + aou + silicate + phosphate + phosphate_star 2262 2.1155350 9823.1462 7.887572 1982-1996 –> 1997-2008 3.9723739 21986.5934
Indo-Pacific (27.95,28.05] cstar_tref ~ sal + aou + nitrate + phosphate_star 2121 2.3344559 9627.4152 8.114849 1997-2008 –> 2009-2019 4.5069068 19568.6656
Indo-Pacific (27.95,28.05] cstar_tref ~ sal + aou + nitrate + silicate + phosphate_star 2121 2.3295082 9620.4150 8.254005 1997-2008 –> 2009-2019 4.4750922 19507.3677
Indo-Pacific (27.95,28.05] cstar_tref ~ sal + aou + silicate + phosphate + phosphate_star 2121 2.4048197 9755.3859 8.396749 1997-2008 –> 2009-2019 4.5384407 19617.0440
Indo-Pacific (27.95,28.05] cstar_tref ~ temp + aou + phosphate + phosphate_star 2121 2.3980224 9741.3788 8.922395 1997-2008 –> 2009-2019 4.5895159 19722.1114
Indo-Pacific (27.95,28.05] cstar_tref ~ temp + aou + silicate + phosphate + phosphate_star 2121 2.3597710 9675.1682 8.699549 1997-2008 –> 2009-2019 4.4753061 19498.3145
Indo-Pacific (28.05,28.1] cstar_tref ~ sal + aou + silicate + phosphate 1614 1.9019794 6667.5990 8.587643 1982-1996 –> 1997-2008 3.5004886 14775.3859
Indo-Pacific (28.05,28.1] cstar_tref ~ sal + aou + silicate + phosphate + phosphate_star 1614 1.8253304 6536.8182 9.104401 1982-1996 –> 1997-2008 3.4031448 14590.7286
Indo-Pacific (28.05,28.1] cstar_tref ~ sal + silicate + phosphate + phosphate_star 1614 1.9091530 6679.7511 8.729869 1982-1996 –> 1997-2008 3.5282651 14842.4521
Indo-Pacific (28.05,28.1] cstar_tref ~ temp + aou + nitrate + silicate + phosphate_star 1614 1.8471680 6575.2076 9.930455 1982-1996 –> 1997-2008 3.4318712 14647.7989
Indo-Pacific (28.05,28.1] cstar_tref ~ temp + aou + silicate + phosphate + phosphate_star 1614 1.7919389 6477.2202 9.116922 1982-1996 –> 1997-2008 3.4075173 14632.5524
Indo-Pacific (28.05,28.1] cstar_tref ~ aou + silicate + phosphate + phosphate_star 1480 2.0189887 6291.7443 9.987210 1997-2008 –> 2009-2019 3.8973463 12919.0020
Indo-Pacific (28.05,28.1] cstar_tref ~ sal + aou + silicate + phosphate + phosphate_star 1480 1.9639299 6211.9027 9.739216 1997-2008 –> 2009-2019 3.7892603 12748.7209
Indo-Pacific (28.05,28.1] cstar_tref ~ temp + aou + nitrate + silicate + phosphate_star 1480 1.9976364 6262.2735 10.515985 1997-2008 –> 2009-2019 3.8448044 12837.4810
Indo-Pacific (28.05,28.1] cstar_tref ~ temp + aou + silicate + phosphate 1480 2.0305789 6308.6880 10.033303 1997-2008 –> 2009-2019 3.9190479 12953.2757
Indo-Pacific (28.05,28.1] cstar_tref ~ temp + aou + silicate + phosphate + phosphate_star 1480 1.9240869 6151.2346 9.194710 1997-2008 –> 2009-2019 3.7160258 12628.4548
Indo-Pacific (28.1, Inf] cstar_tref ~ sal + aou + silicate + phosphate 13531 1.3930357 47381.9699 13.340246 1982-1996 –> 1997-2008 2.6526001 103206.7729
Indo-Pacific (28.1, Inf] cstar_tref ~ sal + aou + silicate + phosphate + phosphate_star 13531 1.2999037 45511.4122 15.704489 1982-1996 –> 1997-2008 2.4519905 98320.7023
Indo-Pacific (28.1, Inf] cstar_tref ~ temp + aou + nitrate + silicate + phosphate_star 13531 1.3138971 45801.1765 12.674226 1982-1996 –> 1997-2008 2.4157006 97100.6627
Indo-Pacific (28.1, Inf] cstar_tref ~ temp + aou + silicate + phosphate + phosphate_star 13531 1.3573410 46681.5043 16.484019 1982-1996 –> 1997-2008 2.5801569 101506.5527
Indo-Pacific (28.1, Inf] cstar_tref ~ temp + nitrate + silicate + phosphate_star 13531 1.5119803 49599.2934 16.999926 1982-1996 –> 1997-2008 2.8159892 106597.2985
Indo-Pacific (28.1, Inf] cstar_tref ~ sal + aou + nitrate + silicate + phosphate_star 12319 1.6225597 46898.7219 9.024654 1997-2008 –> 2009-2019 3.1034885 95938.4580
Indo-Pacific (28.1, Inf] cstar_tref ~ sal + aou + silicate + phosphate 12319 1.5499918 45769.4022 10.853455 1997-2008 –> 2009-2019 2.9430275 93151.3721
Indo-Pacific (28.1, Inf] cstar_tref ~ sal + aou + silicate + phosphate + phosphate_star 12319 1.4654909 44390.2118 13.078916 1997-2008 –> 2009-2019 2.7653947 89901.6241
Indo-Pacific (28.1, Inf] cstar_tref ~ temp + aou + nitrate + silicate + phosphate_star 12319 1.5412287 45631.7127 12.618266 1997-2008 –> 2009-2019 2.8551258 91432.8892
Indo-Pacific (28.1, Inf] cstar_tref ~ temp + aou + silicate + phosphate + phosphate_star 12319 1.5232127 45342.0128 14.186735 1997-2008 –> 2009-2019 2.8805537 92023.5171

5.3.2 per fitting unit

lm_best %>%
  group_by(basin, gamma_slab, eras) %>% 
  summarise(rmse_sum_mean = mean(rmse_sum),
            ais_sum_mean = mean(aic_sum)) %>% 
  ungroup() %>% 
  kable() %>%
  add_header_above() %>%
  kable_styling() %>%
  scroll_box(width = "100%", height = "400px")
basin gamma_slab eras rmse_sum_mean ais_sum_mean
Atlantic (-Inf,26] 1982-1996 –> 1997-2008 2.8933170 1158.583
Atlantic (-Inf,26] 1997-2008 –> 2009-2019 2.6959997 930.835
Atlantic (26,26.5] 1982-1996 –> 1997-2008 8.0234076 12661.256
Atlantic (26,26.5] 1997-2008 –> 2009-2019 7.9507217 10409.808
Atlantic (26.5,26.75] 1982-1996 –> 1997-2008 6.2256928 14642.041
Atlantic (26.5,26.75] 1997-2008 –> 2009-2019 6.6615151 12424.450
Atlantic (26.75,27] 1982-1996 –> 1997-2008 3.6838790 19365.842
Atlantic (26.75,27] 1997-2008 –> 2009-2019 4.3839167 18445.499
Atlantic (27,27.25] 1982-1996 –> 1997-2008 3.8414977 16576.204
Atlantic (27,27.25] 1997-2008 –> 2009-2019 4.2268186 15867.967
Atlantic (27.25,27.5] 1982-1996 –> 1997-2008 4.4675710 19045.204
Atlantic (27.25,27.5] 1997-2008 –> 2009-2019 5.1862228 17037.142
Atlantic (27.5,27.75] 1982-1996 –> 1997-2008 4.9192551 26377.134
Atlantic (27.5,27.75] 1997-2008 –> 2009-2019 5.6099146 24240.644
Atlantic (27.75,27.85] 1982-1996 –> 1997-2008 3.5660349 8037.079
Atlantic (27.75,27.85] 1997-2008 –> 2009-2019 3.7438825 7205.104
Atlantic (27.85,27.95] 1982-1996 –> 1997-2008 5.8671562 9984.805
Atlantic (27.85,27.95] 1997-2008 –> 2009-2019 6.3280150 9238.826
Atlantic (27.95,28.05] 1982-1996 –> 1997-2008 8.8649920 14493.922
Atlantic (27.95,28.05] 1997-2008 –> 2009-2019 8.5963322 12380.206
Atlantic (28.05,28.1] 1982-1996 –> 1997-2008 1.9588470 4561.248
Atlantic (28.05,28.1] 1997-2008 –> 2009-2019 2.1343047 4226.558
Atlantic (28.1,28.15] 1982-1996 –> 1997-2008 1.4239944 4189.743
Atlantic (28.1,28.15] 1997-2008 –> 2009-2019 1.6164644 3960.329
Atlantic (28.15,28.2] 1982-1996 –> 1997-2008 1.0947250 5353.639
Atlantic (28.15,28.2] 1997-2008 –> 2009-2019 1.3348442 5407.606
Atlantic (28.2, Inf] 1982-1996 –> 1997-2008 0.7078988 3926.291
Atlantic (28.2, Inf] 1997-2008 –> 2009-2019 0.8387358 5127.120
Indo-Pacific (-Inf,26] 1982-1996 –> 1997-2008 14.1162657 73108.135
Indo-Pacific (-Inf,26] 1997-2008 –> 2009-2019 13.6432578 61969.398
Indo-Pacific (26,26.5] 1982-1996 –> 1997-2008 9.1624791 67862.432
Indo-Pacific (26,26.5] 1997-2008 –> 2009-2019 9.4244100 57588.278
Indo-Pacific (26.5,26.75] 1982-1996 –> 1997-2008 7.8717996 52657.676
Indo-Pacific (26.5,26.75] 1997-2008 –> 2009-2019 8.1979345 45456.048
Indo-Pacific (26.75,27] 1982-1996 –> 1997-2008 7.8488789 61850.498
Indo-Pacific (26.75,27] 1997-2008 –> 2009-2019 8.7622095 54827.247
Indo-Pacific (27,27.25] 1982-1996 –> 1997-2008 7.5113689 73082.568
Indo-Pacific (27,27.25] 1997-2008 –> 2009-2019 8.9467143 66446.145
Indo-Pacific (27.25,27.5] 1982-1996 –> 1997-2008 6.4269581 61454.526
Indo-Pacific (27.25,27.5] 1997-2008 –> 2009-2019 7.4331331 56133.513
Indo-Pacific (27.5,27.75] 1982-1996 –> 1997-2008 5.3649270 57886.683
Indo-Pacific (27.5,27.75] 1997-2008 –> 2009-2019 6.9772417 54619.526
Indo-Pacific (27.75,27.85] 1982-1996 –> 1997-2008 4.4588633 20522.387
Indo-Pacific (27.75,27.85] 1997-2008 –> 2009-2019 5.5853555 20156.123
Indo-Pacific (27.85,27.95] 1982-1996 –> 1997-2008 4.8479856 27337.540
Indo-Pacific (27.85,27.95] 1997-2008 –> 2009-2019 5.6525674 25059.052
Indo-Pacific (27.95,28.05] 1982-1996 –> 1997-2008 4.0503104 22186.153
Indo-Pacific (27.95,28.05] 1997-2008 –> 2009-2019 4.5170523 19582.701
Indo-Pacific (28.05,28.1] 1982-1996 –> 1997-2008 3.4542574 14697.784
Indo-Pacific (28.05,28.1] 1997-2008 –> 2009-2019 3.8332969 12817.387
Indo-Pacific (28.1, Inf] 1982-1996 –> 1997-2008 2.5832875 101346.398
Indo-Pacific (28.1, Inf] 1997-2008 –> 2009-2019 2.9095180 92489.572

5.4 Target variable coefficients

A data frame to map the target variable is prepared.

# create table with two era belonging to one eras
eras_forward <- lm_all_fitted_wide %>%
  arrange(era) %>% 
  group_by(basin, gamma_slab, model) %>% 
  mutate(eras = paste(era, lead(era), sep = " --> ")) %>% 
  ungroup() %>% 
  select(era, eras) %>% 
  unique()

eras_backward <- lm_all_fitted_wide %>%
  arrange(era) %>% 
  group_by(basin, gamma_slab, model) %>% 
  mutate(eras = paste(lag(era), era, sep = " --> ")) %>% 
  ungroup() %>% 
  select(era, eras) %>% 
  unique()

eras_era <- full_join(eras_backward, eras_forward) %>% 
  filter(str_detect(eras, "NA") == FALSE)

# extend best model selection from eras to era
lm_best_target <- full_join(
  lm_best %>% select(basin, gamma_slab, model, eras),
  eras_era)

lm_best_target <- left_join(lm_best_target, lm_all_fitted_wide)

rm(eras_era, eras_forward, eras_backward,
   lm_all_fitted)

5.5 Plot selected model residuals

# plot model diagnostics, if activated
if (params_local$plot_all_figures == "y") {
  # mutate predictors column
  lm_best_plot <- lm_best_target %>%
    select(basin, gamma_slab, model, eras, era) %>%
    mutate(
      predictors = str_remove(model, paste(params_local$MLR_target, "~ ")),
      predictors = str_replace_all(predictors, "\\+ ", "")
    )
  
  # loop across all basins, era, gamma slabs, and MLRs
  # fit all MLR models
  for (i_basin in unique(GLODAP$basin)) {
    for (i_era in unique(GLODAP$era)) {
      #i_basin <- unique(GLODAP$basin)[1]
      #i_era   <- unique(GLODAP$era)[2]
      print(i_basin)
      print(i_era)
      
      GLODAP_basin_era <- GLODAP %>%
        filter(basin == i_basin, era == i_era)
      
      for (i_gamma_slab in unique(GLODAP_basin_era$gamma_slab)) {
        #i_gamma_slab <- unique(GLODAP_basin_era$gamma_slab)[1]
        print(i_gamma_slab)
        
        GLODAP_basin_era_slab <- GLODAP_basin_era %>%
          filter(gamma_slab == i_gamma_slab)
        
        lm_best_basin_era_slab <- lm_best_plot %>%
          filter(basin == i_basin, era == i_era, gamma_slab == i_gamma_slab)
        
        for (i_eras in unique(lm_best_basin_era_slab$eras)) {
          #i_eras <- unique(lm_best_basin_era_slab$eras)[1]
          print(i_eras)
          
          lm_best_basin_era_slab_eras <- lm_best_basin_era_slab %>%
            filter(eras == i_eras)
          
          for (i_predictors in unique(lm_best_basin_era_slab_eras$predictors)) {
            #i_predictors <- unique(lm_best_basin_era_slab$predictors)[1]
            print(i_predictors)
            # extract one model definition
            i_lm <- lm_all %>%
              filter(predictors == i_predictors) %>%
              select(lm_coeff) %>%
              pull()
            
             # fit model
          if (params_local$MLR_type == "rlm") {
            i_lm_fit <- MASS::rlm(as.formula(i_lm),
                                  data = GLODAP_basin_era_slab)
          }
          
          if (params_local$MLR_type == "lm") {
            i_lm_fit <- lm(as.formula(i_lm),
                           data = GLODAP_basin_era_slab)
          }
            
            # plot model diagnostics vs predictors
            
            p_model_predictors <- ggnostic(
              i_lm_fit,
              columnsY = c(params_local$MLR_target, ".fitted", ".resid"),
              title = paste(
                "era:",
                i_era,
                "| eras:",
                i_eras,
                "| basin:",
                i_basin,
                "| gamma slab:",
                i_gamma_slab,
                "| predictors:",
                i_predictors
              )
            )
            
            ggsave(
              plot = p_model_predictors,
              path = paste(path_version_figures, "eMLR_diagnostics/", sep = ""),
              filename = paste(
                "MLR_residuals",
                i_era,
                i_eras,
                i_basin,
                i_gamma_slab,
                i_predictors,
                "predictors.png",
                sep = "_"
              ),
              width = 14,
              height = 8
            )

            rm(p_model_predictors)
            
            
            # plot model diagnostics vs location
            
            GLODAP_basin_era_slab <- GLODAP_basin_era_slab %>%
              mutate(fitted = i_lm_fit$fitted.values,
                     residuals = i_lm_fit$residuals)
            
            GLODAP_basin_era_slab_long <- GLODAP_basin_era_slab %>% 
              pivot_longer(cols = c(params_local$MLR_target , fitted, residuals),
                           names_to = "estimate",
                           values_to = "value"
              ) %>% 
              pivot_longer(cols = c(lat, lon, depth),
                           names_to = "coordinate_type",
                           values_to = "coordinate_value"
              )

             p_model_coordinate <- GLODAP_basin_era_slab_long %>%
              ggplot(aes(coordinate_value, value)) +
              geom_bin2d() +
              scale_fill_viridis_c() +
              labs(
                title = paste(
                  "era:",
                  i_era,
                  "| eras:",
                  i_eras,
                  "| basin:",
                  i_basin,
                  "| gamma slab:",
                  i_gamma_slab,
                  "| predictors:",
                  i_predictors
                )
              ) +
              facet_grid(estimate~coordinate_type,
                         scales = "free")

            ggsave(
              plot = p_model_coordinate,
              path = paste(path_version_figures, "eMLR_diagnostics", sep = ""),
              filename = paste(
                "Location_MLR_residuals",
                i_era,
                i_eras,
                i_basin,
                i_gamma_slab,
                i_predictors,
                "predictors.png",
                sep = "_"
              ),
              width = 14,
              height = 8
            )

            rm(p_model_coordinate)
            
          }
          
        }
        
      }
    }
  }
  
  rm(
    lm_best_plot,
    lm_best_basin_era_slab,
    i_rmse,
    GLODAP_basin_era,
    GLODAP_basin_era_slab,
    i_lm,
    lm_all_fitted,
    i_basin,
    i_era,
    i_gamma_slab,
    i_predictors,
    lm_all,
    i_aic,
    i_n_predictors,
    i_resid_max
  )
  
}

Individual residual plots of the MLR models for each basin, era, eras and neutral density (gamma) slab are available at:

/nfs/kryo/work/jenmueller/emlr_cant/model/v_XXX/figures/eMLR_diagnostics/

5.6 Cant coeffcients

A data frame of coefficient offsets is prepared to facilitate the direct mapping of Cant.

# pivot long format
lm_best_long <- lm_best_target %>%
  pivot_longer(cols = starts_with("coeff_"),
               names_to = "term",
               values_to = "estimate",
               names_prefix = "coeff_")

# subtract coefficients of adjacent era  
lm_best_long <- lm_best_long %>%
  arrange(era) %>%
  group_by(basin, gamma_slab, eras, model, term) %>%
  mutate(delta_coeff = estimate - lag(estimate)) %>%
  ungroup() %>%
  arrange(basin, gamma_slab, model, term, eras) %>%
  drop_na() %>%
  select(-c(era,estimate))

# pivot back to wide format
lm_best_cant <- lm_best_long %>%
  pivot_wider(values_from = delta_coeff,
              names_from = term,
              names_prefix = "delta_coeff_",
              values_fill = 0)

5.7 Write files

lm_best_target %>%
  select(
    basin,
    gamma_slab,
    model,
    eras,
    era,
    starts_with("coeff_")
  ) %>%
  write_csv(paste(path_version_data,
                  "lm_best_target.csv",
                  sep = ""))

lm_best_cant %>%
  select(
    basin,
    gamma_slab,
    model,
    eras,
    starts_with("delta_coeff_")
  ) %>%
  write_csv(paste(path_version_data,
                  "lm_best_cant.csv",
                  sep = ""))

6 Model diagnotics

6.1 Selection criterion vs predictors

The selection criterion (aic) was plotted against the number of predictors (limited to 3 - 9).

6.1.1 All models

lm_all_fitted_wide %>%
  ggplot(aes(as.factor(n_predictors),
             !!sym(params_local$MLR_criterion),
             col = basin)) +
  geom_hline(yintercept = 10) +
  geom_boxplot() +
  facet_grid(gamma_slab~era) +
  scale_color_brewer(palette = "Set1") +
  labs(x="Number of predictors")

Version Author Date
0d0bca1 Donghe-Zhu 2021-03-03
cb63c16 Donghe-Zhu 2021-03-03
ffda45a Donghe-Zhu 2021-03-03
691ba81 Donghe-Zhu 2021-03-03
c5e45a2 Donghe-Zhu 2021-03-03
89c3e58 Donghe-Zhu 2021-03-03
c911669 Donghe-Zhu 2021-03-03
b71c719 Donghe-Zhu 2021-03-01
13666ca Donghe-Zhu 2021-03-01
c6e60fe Donghe-Zhu 2021-03-01
7a388f7 Donghe-Zhu 2021-03-01
799e913 Donghe-Zhu 2021-03-01
66ff99f Donghe-Zhu 2021-03-01
ac9bb7a Donghe-Zhu 2021-02-28
efdc047 Donghe-Zhu 2021-02-28
e9a7418 Donghe-Zhu 2021-02-28
e152917 Donghe-Zhu 2021-02-28
287123c Donghe-Zhu 2021-02-27
54d5b5b Donghe-Zhu 2021-02-27
330f064 Donghe-Zhu 2021-02-27
adbc9bc Donghe-Zhu 2021-02-27
5937141 Donghe-Zhu 2021-02-27
4414bbf Donghe-Zhu 2021-02-27
a265efb Donghe-Zhu 2021-02-27
19edd1e Donghe-Zhu 2021-02-27
f20483f Donghe-Zhu 2021-02-26
6a2c7b3 Donghe-Zhu 2021-02-25
02b976d Donghe-Zhu 2021-02-24
354c224 Donghe-Zhu 2021-02-24
1a0a88a Donghe-Zhu 2021-02-24
57f701e Donghe-Zhu 2021-02-24
06f3149 Donghe-Zhu 2021-02-16
401eab3 Donghe-Zhu 2021-02-15
e3bba84 Donghe-Zhu 2021-02-15
5dce4b1 Donghe-Zhu 2021-02-15
4469a0c Donghe-Zhu 2021-02-13
5ae6a69 Donghe-Zhu 2021-02-10
05385dc Donghe-Zhu 2021-02-10
f791ae4 Donghe-Zhu 2021-02-09
f71ae34 Donghe-Zhu 2021-02-09
c011832 Donghe-Zhu 2021-02-09
a145fa7 Donghe-Zhu 2021-02-09
c344e42 Donghe-Zhu 2021-02-08
2f095d7 Donghe-Zhu 2021-02-07
1fad5f1 Donghe-Zhu 2021-02-07
ca03c39 Donghe-Zhu 2021-02-07
cd7c52c Donghe-Zhu 2021-02-04
bcf84f4 Donghe-Zhu 2021-02-02
a518739 Donghe-Zhu 2021-02-01
61666de Donghe-Zhu 2021-01-31
865b582 Donghe-Zhu 2021-01-31
3e68089 Donghe-Zhu 2021-01-31
ecf335c Donghe-Zhu 2021-01-31
a618965 Donghe-Zhu 2021-01-31
59e006e Donghe-Zhu 2021-01-31
a1c8f87 Donghe-Zhu 2021-01-31
ae5c18f Donghe-Zhu 2021-01-31
b50fe52 Donghe-Zhu 2021-01-31
ac99ae5 jens-daniel-mueller 2021-01-29
b5bdcaf Donghe-Zhu 2021-01-29
442010d Donghe-Zhu 2021-01-29
372adf5 Donghe-Zhu 2021-01-29
af8788e Donghe-Zhu 2021-01-29
21c91c9 Donghe-Zhu 2021-01-29
eded038 Donghe-Zhu 2021-01-29
541d4dd Donghe-Zhu 2021-01-29
6a75576 Donghe-Zhu 2021-01-28
16fba40 Donghe-Zhu 2021-01-28
12bc567 Donghe-Zhu 2021-01-27
ceed31b Donghe-Zhu 2021-01-27
342402d Donghe-Zhu 2021-01-27
5bad5c2 Donghe-Zhu 2021-01-27
61efb56 Donghe-Zhu 2021-01-25
48f638e Donghe-Zhu 2021-01-25
c1cec47 Donghe-Zhu 2021-01-25
05ffb0c Donghe-Zhu 2021-01-25
8b97165 Donghe-Zhu 2021-01-25
c569946 Donghe-Zhu 2021-01-24
a2f0d56 Donghe-Zhu 2021-01-23
28509fc Donghe-Zhu 2021-01-23
4c28e4a Donghe-Zhu 2021-01-22
24cc264 jens-daniel-mueller 2021-01-22
7891955 Donghe-Zhu 2021-01-21
d4cf1cb Donghe-Zhu 2021-01-21
1f3e5b6 jens-daniel-mueller 2021-01-20
0e7bdf1 jens-daniel-mueller 2021-01-15
4571843 jens-daniel-mueller 2021-01-14
b3564aa jens-daniel-mueller 2021-01-14
8d032c3 jens-daniel-mueller 2021-01-14
17dee1d jens-daniel-mueller 2021-01-13
7cdea0c jens-daniel-mueller 2021-01-06
fa85b93 jens-daniel-mueller 2021-01-06
e5cb81a Donghe-Zhu 2021-01-05
a499f10 Donghe-Zhu 2021-01-05
fb8a752 Donghe-Zhu 2020-12-23
8fae0b2 Donghe-Zhu 2020-12-21
c8b76b3 jens-daniel-mueller 2020-12-19

6.1.2 Best models

lm_best_target %>%
  ggplot(aes("",
             !!sym(params_local$MLR_criterion),
             col = basin)) +
  geom_hline(yintercept = 10) +
  geom_boxplot() +
  facet_grid(gamma_slab~era) +
  scale_color_brewer(palette = "Set1") +
  labs(x="Number of predictors pooled")

Version Author Date
0d0bca1 Donghe-Zhu 2021-03-03
cb63c16 Donghe-Zhu 2021-03-03
ffda45a Donghe-Zhu 2021-03-03
691ba81 Donghe-Zhu 2021-03-03
c5e45a2 Donghe-Zhu 2021-03-03
89c3e58 Donghe-Zhu 2021-03-03
c407a50 Donghe-Zhu 2021-03-03
c911669 Donghe-Zhu 2021-03-03
b71c719 Donghe-Zhu 2021-03-01
13666ca Donghe-Zhu 2021-03-01
c6e60fe Donghe-Zhu 2021-03-01
7a388f7 Donghe-Zhu 2021-03-01
799e913 Donghe-Zhu 2021-03-01
66ff99f Donghe-Zhu 2021-03-01
ac9bb7a Donghe-Zhu 2021-02-28
efdc047 Donghe-Zhu 2021-02-28
e9a7418 Donghe-Zhu 2021-02-28
e152917 Donghe-Zhu 2021-02-28
287123c Donghe-Zhu 2021-02-27
54d5b5b Donghe-Zhu 2021-02-27
330f064 Donghe-Zhu 2021-02-27
adbc9bc Donghe-Zhu 2021-02-27
5937141 Donghe-Zhu 2021-02-27
4414bbf Donghe-Zhu 2021-02-27
a265efb Donghe-Zhu 2021-02-27
19edd1e Donghe-Zhu 2021-02-27
f20483f Donghe-Zhu 2021-02-26
6a2c7b3 Donghe-Zhu 2021-02-25
354c224 Donghe-Zhu 2021-02-24
1a0a88a Donghe-Zhu 2021-02-24
57f701e Donghe-Zhu 2021-02-24
06f3149 Donghe-Zhu 2021-02-16
401eab3 Donghe-Zhu 2021-02-15
e3bba84 Donghe-Zhu 2021-02-15
5dce4b1 Donghe-Zhu 2021-02-15
4469a0c Donghe-Zhu 2021-02-13
5ae6a69 Donghe-Zhu 2021-02-10
05385dc Donghe-Zhu 2021-02-10
f791ae4 Donghe-Zhu 2021-02-09
f71ae34 Donghe-Zhu 2021-02-09
c011832 Donghe-Zhu 2021-02-09
a145fa7 Donghe-Zhu 2021-02-09
c344e42 Donghe-Zhu 2021-02-08
2f095d7 Donghe-Zhu 2021-02-07
1fad5f1 Donghe-Zhu 2021-02-07
ca03c39 Donghe-Zhu 2021-02-07
e2ffc14 Donghe-Zhu 2021-02-05
cd7c52c Donghe-Zhu 2021-02-04
bcf84f4 Donghe-Zhu 2021-02-02
a518739 Donghe-Zhu 2021-02-01
61666de Donghe-Zhu 2021-01-31
865b582 Donghe-Zhu 2021-01-31
3e68089 Donghe-Zhu 2021-01-31
ecf335c Donghe-Zhu 2021-01-31
a618965 Donghe-Zhu 2021-01-31
59e006e Donghe-Zhu 2021-01-31
a1c8f87 Donghe-Zhu 2021-01-31
ae5c18f Donghe-Zhu 2021-01-31
b50fe52 Donghe-Zhu 2021-01-31
ac99ae5 jens-daniel-mueller 2021-01-29
b5bdcaf Donghe-Zhu 2021-01-29
442010d Donghe-Zhu 2021-01-29
372adf5 Donghe-Zhu 2021-01-29
af8788e Donghe-Zhu 2021-01-29
21c91c9 Donghe-Zhu 2021-01-29
eded038 Donghe-Zhu 2021-01-29
541d4dd Donghe-Zhu 2021-01-29
6a75576 Donghe-Zhu 2021-01-28
16fba40 Donghe-Zhu 2021-01-28
12bc567 Donghe-Zhu 2021-01-27
ceed31b Donghe-Zhu 2021-01-27
342402d Donghe-Zhu 2021-01-27
5bad5c2 Donghe-Zhu 2021-01-27
61efb56 Donghe-Zhu 2021-01-25
48f638e Donghe-Zhu 2021-01-25
c1cec47 Donghe-Zhu 2021-01-25
05ffb0c Donghe-Zhu 2021-01-25
8b97165 Donghe-Zhu 2021-01-25
c569946 Donghe-Zhu 2021-01-24
a2f0d56 Donghe-Zhu 2021-01-23
28509fc Donghe-Zhu 2021-01-23
4c28e4a Donghe-Zhu 2021-01-22
24cc264 jens-daniel-mueller 2021-01-22
7891955 Donghe-Zhu 2021-01-21
d4cf1cb Donghe-Zhu 2021-01-21
1f3e5b6 jens-daniel-mueller 2021-01-20
0e7bdf1 jens-daniel-mueller 2021-01-15
4571843 jens-daniel-mueller 2021-01-14
b3564aa jens-daniel-mueller 2021-01-14
8d032c3 jens-daniel-mueller 2021-01-14
17dee1d jens-daniel-mueller 2021-01-13
7cdea0c jens-daniel-mueller 2021-01-06
fa85b93 jens-daniel-mueller 2021-01-06
e5cb81a Donghe-Zhu 2021-01-05
a499f10 Donghe-Zhu 2021-01-05
fb8a752 Donghe-Zhu 2020-12-23
8fae0b2 Donghe-Zhu 2020-12-21
c8b76b3 jens-daniel-mueller 2020-12-19

6.2 RMSE correlation between eras

RMSE was plotted to compare the agreement for one model applied to two adjacent eras (ie check whether the same predictor combination performs equal in both eras).

6.2.1 All models

# find max rmse to scale axis
max_rmse <-
  max(c(lm_all_fitted_wide_eras$rmse,
        lm_all_fitted_wide_eras$rmse_sum - lm_all_fitted_wide_eras$rmse))

lm_all_fitted_wide_eras %>%
  ggplot(aes(rmse, rmse_sum - rmse, col = gamma_slab)) +
  geom_point() +
  scale_color_viridis_d() +
  coord_equal(xlim = c(0,max_rmse),
              ylim = c(0,max_rmse)) +
  facet_grid(eras ~ basin)

Version Author Date
0d0bca1 Donghe-Zhu 2021-03-03
cb63c16 Donghe-Zhu 2021-03-03
ffda45a Donghe-Zhu 2021-03-03
691ba81 Donghe-Zhu 2021-03-03
c5e45a2 Donghe-Zhu 2021-03-03
89c3e58 Donghe-Zhu 2021-03-03
c911669 Donghe-Zhu 2021-03-03
13666ca Donghe-Zhu 2021-03-01
c6e60fe Donghe-Zhu 2021-03-01
7a388f7 Donghe-Zhu 2021-03-01
799e913 Donghe-Zhu 2021-03-01
66ff99f Donghe-Zhu 2021-03-01
ac9bb7a Donghe-Zhu 2021-02-28
efdc047 Donghe-Zhu 2021-02-28
e9a7418 Donghe-Zhu 2021-02-28
287123c Donghe-Zhu 2021-02-27
54d5b5b Donghe-Zhu 2021-02-27
330f064 Donghe-Zhu 2021-02-27
adbc9bc Donghe-Zhu 2021-02-27
5937141 Donghe-Zhu 2021-02-27
4414bbf Donghe-Zhu 2021-02-27
a265efb Donghe-Zhu 2021-02-27
19edd1e Donghe-Zhu 2021-02-27
f20483f Donghe-Zhu 2021-02-26
6a2c7b3 Donghe-Zhu 2021-02-25
02b976d Donghe-Zhu 2021-02-24
354c224 Donghe-Zhu 2021-02-24
1a0a88a Donghe-Zhu 2021-02-24
57f701e Donghe-Zhu 2021-02-24
06f3149 Donghe-Zhu 2021-02-16
e3bba84 Donghe-Zhu 2021-02-15
5dce4b1 Donghe-Zhu 2021-02-15
4469a0c Donghe-Zhu 2021-02-13
5ae6a69 Donghe-Zhu 2021-02-10
05385dc Donghe-Zhu 2021-02-10
f791ae4 Donghe-Zhu 2021-02-09
f71ae34 Donghe-Zhu 2021-02-09
c011832 Donghe-Zhu 2021-02-09
a145fa7 Donghe-Zhu 2021-02-09
c344e42 Donghe-Zhu 2021-02-08
2f095d7 Donghe-Zhu 2021-02-07
1fad5f1 Donghe-Zhu 2021-02-07
ca03c39 Donghe-Zhu 2021-02-07
cd7c52c Donghe-Zhu 2021-02-04
bcf84f4 Donghe-Zhu 2021-02-02
61666de Donghe-Zhu 2021-01-31
865b582 Donghe-Zhu 2021-01-31
3e68089 Donghe-Zhu 2021-01-31
ecf335c Donghe-Zhu 2021-01-31
a618965 Donghe-Zhu 2021-01-31
59e006e Donghe-Zhu 2021-01-31
a1c8f87 Donghe-Zhu 2021-01-31
ae5c18f Donghe-Zhu 2021-01-31
b50fe52 Donghe-Zhu 2021-01-31
ac99ae5 jens-daniel-mueller 2021-01-29
b5bdcaf Donghe-Zhu 2021-01-29
442010d Donghe-Zhu 2021-01-29
372adf5 Donghe-Zhu 2021-01-29
af8788e Donghe-Zhu 2021-01-29
21c91c9 Donghe-Zhu 2021-01-29
eded038 Donghe-Zhu 2021-01-29
541d4dd Donghe-Zhu 2021-01-29
6a75576 Donghe-Zhu 2021-01-28
16fba40 Donghe-Zhu 2021-01-28
12bc567 Donghe-Zhu 2021-01-27
ceed31b Donghe-Zhu 2021-01-27
342402d Donghe-Zhu 2021-01-27
5bad5c2 Donghe-Zhu 2021-01-27
61efb56 Donghe-Zhu 2021-01-25
48f638e Donghe-Zhu 2021-01-25
c1cec47 Donghe-Zhu 2021-01-25
05ffb0c Donghe-Zhu 2021-01-25
8b97165 Donghe-Zhu 2021-01-25
c569946 Donghe-Zhu 2021-01-24
a2f0d56 Donghe-Zhu 2021-01-23
28509fc Donghe-Zhu 2021-01-23
4c28e4a Donghe-Zhu 2021-01-22
24cc264 jens-daniel-mueller 2021-01-22
7891955 Donghe-Zhu 2021-01-21
d4cf1cb Donghe-Zhu 2021-01-21
1f3e5b6 jens-daniel-mueller 2021-01-20
0e7bdf1 jens-daniel-mueller 2021-01-15
4571843 jens-daniel-mueller 2021-01-14
b3564aa jens-daniel-mueller 2021-01-14
8d032c3 jens-daniel-mueller 2021-01-14
17dee1d jens-daniel-mueller 2021-01-13
7cdea0c jens-daniel-mueller 2021-01-06
fa85b93 jens-daniel-mueller 2021-01-06
e5cb81a Donghe-Zhu 2021-01-05
a499f10 Donghe-Zhu 2021-01-05
fb8a752 Donghe-Zhu 2020-12-23
8fae0b2 Donghe-Zhu 2020-12-21
c8b76b3 jens-daniel-mueller 2020-12-19
rm(max_rmse)

6.2.2 Best models

# find max rmse to scale axis
max_rmse <-
  max(c(lm_best$rmse,
        lm_best$rmse_sum - lm_best$rmse))

lm_best %>%
  ggplot(aes(rmse, rmse_sum - rmse, col = gamma_slab)) +
  geom_point() +
  scale_color_viridis_d() +
  coord_equal(xlim = c(0,max_rmse),
              ylim = c(0,max_rmse)) +
  facet_grid(eras ~ basin)

Version Author Date
0d0bca1 Donghe-Zhu 2021-03-03
cb63c16 Donghe-Zhu 2021-03-03
ffda45a Donghe-Zhu 2021-03-03
691ba81 Donghe-Zhu 2021-03-03
c5e45a2 Donghe-Zhu 2021-03-03
89c3e58 Donghe-Zhu 2021-03-03
c407a50 Donghe-Zhu 2021-03-03
c911669 Donghe-Zhu 2021-03-03
b71c719 Donghe-Zhu 2021-03-01
13666ca Donghe-Zhu 2021-03-01
c6e60fe Donghe-Zhu 2021-03-01
7a388f7 Donghe-Zhu 2021-03-01
799e913 Donghe-Zhu 2021-03-01
66ff99f Donghe-Zhu 2021-03-01
ac9bb7a Donghe-Zhu 2021-02-28
efdc047 Donghe-Zhu 2021-02-28
e9a7418 Donghe-Zhu 2021-02-28
e152917 Donghe-Zhu 2021-02-28
287123c Donghe-Zhu 2021-02-27
54d5b5b Donghe-Zhu 2021-02-27
330f064 Donghe-Zhu 2021-02-27
adbc9bc Donghe-Zhu 2021-02-27
5937141 Donghe-Zhu 2021-02-27
4414bbf Donghe-Zhu 2021-02-27
a265efb Donghe-Zhu 2021-02-27
19edd1e Donghe-Zhu 2021-02-27
f20483f Donghe-Zhu 2021-02-26
6a2c7b3 Donghe-Zhu 2021-02-25
354c224 Donghe-Zhu 2021-02-24
1a0a88a Donghe-Zhu 2021-02-24
57f701e Donghe-Zhu 2021-02-24
06f3149 Donghe-Zhu 2021-02-16
401eab3 Donghe-Zhu 2021-02-15
e3bba84 Donghe-Zhu 2021-02-15
5dce4b1 Donghe-Zhu 2021-02-15
4469a0c Donghe-Zhu 2021-02-13
5ae6a69 Donghe-Zhu 2021-02-10
05385dc Donghe-Zhu 2021-02-10
f791ae4 Donghe-Zhu 2021-02-09
f71ae34 Donghe-Zhu 2021-02-09
c011832 Donghe-Zhu 2021-02-09
a145fa7 Donghe-Zhu 2021-02-09
c344e42 Donghe-Zhu 2021-02-08
2f095d7 Donghe-Zhu 2021-02-07
1fad5f1 Donghe-Zhu 2021-02-07
ca03c39 Donghe-Zhu 2021-02-07
e2ffc14 Donghe-Zhu 2021-02-05
cd7c52c Donghe-Zhu 2021-02-04
bcf84f4 Donghe-Zhu 2021-02-02
a518739 Donghe-Zhu 2021-02-01
61666de Donghe-Zhu 2021-01-31
865b582 Donghe-Zhu 2021-01-31
3e68089 Donghe-Zhu 2021-01-31
ecf335c Donghe-Zhu 2021-01-31
a618965 Donghe-Zhu 2021-01-31
59e006e Donghe-Zhu 2021-01-31
a1c8f87 Donghe-Zhu 2021-01-31
ae5c18f Donghe-Zhu 2021-01-31
b50fe52 Donghe-Zhu 2021-01-31
ac99ae5 jens-daniel-mueller 2021-01-29
b5bdcaf Donghe-Zhu 2021-01-29
442010d Donghe-Zhu 2021-01-29
372adf5 Donghe-Zhu 2021-01-29
af8788e Donghe-Zhu 2021-01-29
21c91c9 Donghe-Zhu 2021-01-29
eded038 Donghe-Zhu 2021-01-29
541d4dd Donghe-Zhu 2021-01-29
6a75576 Donghe-Zhu 2021-01-28
16fba40 Donghe-Zhu 2021-01-28
12bc567 Donghe-Zhu 2021-01-27
ceed31b Donghe-Zhu 2021-01-27
342402d Donghe-Zhu 2021-01-27
5bad5c2 Donghe-Zhu 2021-01-27
61efb56 Donghe-Zhu 2021-01-25
48f638e Donghe-Zhu 2021-01-25
c1cec47 Donghe-Zhu 2021-01-25
05ffb0c Donghe-Zhu 2021-01-25
8b97165 Donghe-Zhu 2021-01-25
c569946 Donghe-Zhu 2021-01-24
a2f0d56 Donghe-Zhu 2021-01-23
28509fc Donghe-Zhu 2021-01-23
4c28e4a Donghe-Zhu 2021-01-22
24cc264 jens-daniel-mueller 2021-01-22
7891955 Donghe-Zhu 2021-01-21
d4cf1cb Donghe-Zhu 2021-01-21
1f3e5b6 jens-daniel-mueller 2021-01-20
0e7bdf1 jens-daniel-mueller 2021-01-15
4571843 jens-daniel-mueller 2021-01-14
b3564aa jens-daniel-mueller 2021-01-14
8d032c3 jens-daniel-mueller 2021-01-14
17dee1d jens-daniel-mueller 2021-01-13
7cdea0c jens-daniel-mueller 2021-01-06
fa85b93 jens-daniel-mueller 2021-01-06
e5cb81a Donghe-Zhu 2021-01-05
a499f10 Donghe-Zhu 2021-01-05
fb8a752 Donghe-Zhu 2020-12-23
8fae0b2 Donghe-Zhu 2020-12-21
c8b76b3 jens-daniel-mueller 2020-12-19
rm(max_rmse)

6.3 Predictor counts

The number of models where a particular predictor was included were counted for each basin, density slab and compared eras

# calculate cases of predictor used
lm_all_stats <- lm_best_long %>% 
  filter(term != "(Intercept)",
         delta_coeff != 0) %>% 
  group_by(basin, eras, gamma_slab) %>% 
  count(term) %>% 
  ungroup() %>% 
  pivot_wider(values_from = n,
              names_from = term,
              values_fill = 0)

# print table
lm_all_stats %>%
  gt(rowname_col = "gamma_slab",
     groupname_col = c("basin", "eras")) %>% 
  summary_rows(
    groups = TRUE,
    fns = list(total = "sum")
  )
aou nitrate phosphate phosphate_star sal silicate temp
Atlantic - 1982-1996 --> 1997-2008
(-Inf,26] 5 1 4 5 3 2 2
(26,26.5] 5 3 2 4 1 4 4
(26.5,26.75] 5 1 4 4 2 5 2
(26.75,27] 5 1 4 4 1 5 3
(27,27.25] 5 2 3 4 3 5 2
(27.25,27.5] 5 4 1 3 3 5 2
(27.5,27.75] 5 1 4 3 4 3 1
(27.75,27.85] 5 2 3 3 5 4 0
(27.85,27.95] 5 0 5 5 2 3 2
(27.95,28.05] 5 2 3 5 2 3 3
(28.05,28.1] 5 0 5 5 2 3 2
(28.1,28.15] 5 1 4 5 3 4 1
(28.15,28.2] 5 5 0 4 2 3 3
(28.2, Inf] 5 5 0 3 4 3 1
total 70.00 28.00 42.00 57.00 37.00 52.00 28.00
Atlantic - 1997-2008 --> 2009-2019
(-Inf,26] 5 0 4 5 3 3 2
(26,26.5] 5 3 2 4 1 4 4
(26.5,26.75] 5 1 4 4 2 5 2
(26.75,27] 5 1 4 4 2 5 2
(27,27.25] 5 2 2 4 4 5 1
(27.25,27.5] 5 5 0 3 2 5 2
(27.5,27.75] 5 1 4 3 5 3 0
(27.75,27.85] 5 2 3 3 5 4 0
(27.85,27.95] 5 0 5 5 2 3 2
(27.95,28.05] 5 2 3 5 2 3 3
(28.05,28.1] 5 1 4 5 3 3 2
(28.1,28.15] 5 1 4 5 3 3 2
(28.15,28.2] 5 5 0 4 2 3 3
(28.2, Inf] 4 5 0 3 5 3 0
total 69.00 29.00 39.00 57.00 41.00 52.00 25.00
Indo-Pacific - 1982-1996 --> 1997-2008
(-Inf,26] 4 1 4 5 2 4 3
(26,26.5] 5 1 4 4 1 5 3
(26.5,26.75] 5 1 4 5 2 4 2
(26.75,27] 5 0 5 5 2 3 2
(27,27.25] 4 2 3 5 1 4 4
(27.25,27.5] 5 2 2 5 3 5 2
(27.5,27.75] 3 2 2 5 5 5 0
(27.75,27.85] 5 1 4 4 1 5 3
(27.85,27.95] 3 5 0 4 0 3 5
(27.95,28.05] 5 1 4 4 1 5 3
(28.05,28.1] 4 1 4 4 3 5 2
(28.1, Inf] 4 2 3 4 2 5 3
total 52.00 19.00 39.00 54.00 23.00 53.00 32.00
Indo-Pacific - 1997-2008 --> 2009-2019
(-Inf,26] 4 1 4 5 2 4 3
(26,26.5] 5 1 4 4 1 5 3
(26.5,26.75] 4 2 3 5 1 5 3
(26.75,27] 5 0 5 5 2 3 2
(27,27.25] 5 1 4 5 1 4 3
(27.25,27.5] 5 2 2 5 3 5 2
(27.5,27.75] 4 2 2 5 4 5 1
(27.75,27.85] 4 2 3 5 3 4 2
(27.85,27.95] 4 4 1 4 0 4 5
(27.95,28.05] 5 2 3 5 3 3 2
(28.05,28.1] 5 1 4 4 1 5 3
(28.1, Inf] 5 2 3 4 3 5 2
total 55.00 20.00 38.00 56.00 24.00 52.00 31.00

6.4 RMSE alternatives

AIC is an alternative criterion to RMSE to judge model quality, but not (yet) taken into account.

lm_all_fitted_wide_eras %>% 
  ggplot(aes(rmse, aic, col = gamma_slab)) +
  geom_point() +
  scale_color_viridis_d() +
  facet_grid(eras~basin)

Version Author Date
0d0bca1 Donghe-Zhu 2021-03-03
cb63c16 Donghe-Zhu 2021-03-03
ffda45a Donghe-Zhu 2021-03-03
691ba81 Donghe-Zhu 2021-03-03
c5e45a2 Donghe-Zhu 2021-03-03
89c3e58 Donghe-Zhu 2021-03-03
c911669 Donghe-Zhu 2021-03-03
13666ca Donghe-Zhu 2021-03-01
c6e60fe Donghe-Zhu 2021-03-01
7a388f7 Donghe-Zhu 2021-03-01
799e913 Donghe-Zhu 2021-03-01
66ff99f Donghe-Zhu 2021-03-01
ac9bb7a Donghe-Zhu 2021-02-28
efdc047 Donghe-Zhu 2021-02-28
e9a7418 Donghe-Zhu 2021-02-28
287123c Donghe-Zhu 2021-02-27
54d5b5b Donghe-Zhu 2021-02-27
330f064 Donghe-Zhu 2021-02-27
adbc9bc Donghe-Zhu 2021-02-27
5937141 Donghe-Zhu 2021-02-27
4414bbf Donghe-Zhu 2021-02-27
a265efb Donghe-Zhu 2021-02-27
19edd1e Donghe-Zhu 2021-02-27
f20483f Donghe-Zhu 2021-02-26
6a2c7b3 Donghe-Zhu 2021-02-25
02b976d Donghe-Zhu 2021-02-24
354c224 Donghe-Zhu 2021-02-24
1a0a88a Donghe-Zhu 2021-02-24
57f701e Donghe-Zhu 2021-02-24
06f3149 Donghe-Zhu 2021-02-16
e3bba84 Donghe-Zhu 2021-02-15
5dce4b1 Donghe-Zhu 2021-02-15
4469a0c Donghe-Zhu 2021-02-13
5ae6a69 Donghe-Zhu 2021-02-10
05385dc Donghe-Zhu 2021-02-10
f791ae4 Donghe-Zhu 2021-02-09
f71ae34 Donghe-Zhu 2021-02-09
c011832 Donghe-Zhu 2021-02-09
a145fa7 Donghe-Zhu 2021-02-09
c344e42 Donghe-Zhu 2021-02-08
2f095d7 Donghe-Zhu 2021-02-07
1fad5f1 Donghe-Zhu 2021-02-07
ca03c39 Donghe-Zhu 2021-02-07
cd7c52c Donghe-Zhu 2021-02-04
bcf84f4 Donghe-Zhu 2021-02-02
61666de Donghe-Zhu 2021-01-31
865b582 Donghe-Zhu 2021-01-31
3e68089 Donghe-Zhu 2021-01-31
ecf335c Donghe-Zhu 2021-01-31
a618965 Donghe-Zhu 2021-01-31
59e006e Donghe-Zhu 2021-01-31
a1c8f87 Donghe-Zhu 2021-01-31
ae5c18f Donghe-Zhu 2021-01-31
b50fe52 Donghe-Zhu 2021-01-31
ac99ae5 jens-daniel-mueller 2021-01-29
b5bdcaf Donghe-Zhu 2021-01-29
442010d Donghe-Zhu 2021-01-29
372adf5 Donghe-Zhu 2021-01-29
af8788e Donghe-Zhu 2021-01-29
21c91c9 Donghe-Zhu 2021-01-29
eded038 Donghe-Zhu 2021-01-29
541d4dd Donghe-Zhu 2021-01-29
6a75576 Donghe-Zhu 2021-01-28
16fba40 Donghe-Zhu 2021-01-28
12bc567 Donghe-Zhu 2021-01-27
ceed31b Donghe-Zhu 2021-01-27
342402d Donghe-Zhu 2021-01-27
5bad5c2 Donghe-Zhu 2021-01-27
61efb56 Donghe-Zhu 2021-01-25
48f638e Donghe-Zhu 2021-01-25
c1cec47 Donghe-Zhu 2021-01-25
05ffb0c Donghe-Zhu 2021-01-25
8b97165 Donghe-Zhu 2021-01-25
c569946 Donghe-Zhu 2021-01-24
a2f0d56 Donghe-Zhu 2021-01-23
28509fc Donghe-Zhu 2021-01-23
4c28e4a Donghe-Zhu 2021-01-22
24cc264 jens-daniel-mueller 2021-01-22
7891955 Donghe-Zhu 2021-01-21
d4cf1cb Donghe-Zhu 2021-01-21
1f3e5b6 jens-daniel-mueller 2021-01-20
0e7bdf1 jens-daniel-mueller 2021-01-15
4571843 jens-daniel-mueller 2021-01-14
b3564aa jens-daniel-mueller 2021-01-14
8d032c3 jens-daniel-mueller 2021-01-14
17dee1d jens-daniel-mueller 2021-01-13
7cdea0c jens-daniel-mueller 2021-01-06
fa85b93 jens-daniel-mueller 2021-01-06
e5cb81a Donghe-Zhu 2021-01-05
a499f10 Donghe-Zhu 2021-01-05
fb8a752 Donghe-Zhu 2020-12-23
8fae0b2 Donghe-Zhu 2020-12-21
c8b76b3 jens-daniel-mueller 2020-12-19
lm_best %>% 
  ggplot(aes(rmse, aic, col = gamma_slab)) +
  geom_point() +
  scale_color_viridis_d() +
  facet_grid(eras~basin)

Version Author Date
0d0bca1 Donghe-Zhu 2021-03-03
cb63c16 Donghe-Zhu 2021-03-03
ffda45a Donghe-Zhu 2021-03-03
691ba81 Donghe-Zhu 2021-03-03
c5e45a2 Donghe-Zhu 2021-03-03
89c3e58 Donghe-Zhu 2021-03-03
c407a50 Donghe-Zhu 2021-03-03
c911669 Donghe-Zhu 2021-03-03
b71c719 Donghe-Zhu 2021-03-01
13666ca Donghe-Zhu 2021-03-01
c6e60fe Donghe-Zhu 2021-03-01
7a388f7 Donghe-Zhu 2021-03-01
799e913 Donghe-Zhu 2021-03-01
66ff99f Donghe-Zhu 2021-03-01
ac9bb7a Donghe-Zhu 2021-02-28
efdc047 Donghe-Zhu 2021-02-28
e9a7418 Donghe-Zhu 2021-02-28
e152917 Donghe-Zhu 2021-02-28
287123c Donghe-Zhu 2021-02-27
54d5b5b Donghe-Zhu 2021-02-27
330f064 Donghe-Zhu 2021-02-27
adbc9bc Donghe-Zhu 2021-02-27
5937141 Donghe-Zhu 2021-02-27
4414bbf Donghe-Zhu 2021-02-27
a265efb Donghe-Zhu 2021-02-27
19edd1e Donghe-Zhu 2021-02-27
f20483f Donghe-Zhu 2021-02-26
6a2c7b3 Donghe-Zhu 2021-02-25
354c224 Donghe-Zhu 2021-02-24
1a0a88a Donghe-Zhu 2021-02-24
57f701e Donghe-Zhu 2021-02-24
06f3149 Donghe-Zhu 2021-02-16
401eab3 Donghe-Zhu 2021-02-15
e3bba84 Donghe-Zhu 2021-02-15
5dce4b1 Donghe-Zhu 2021-02-15
4469a0c Donghe-Zhu 2021-02-13
5ae6a69 Donghe-Zhu 2021-02-10
05385dc Donghe-Zhu 2021-02-10
f791ae4 Donghe-Zhu 2021-02-09
f71ae34 Donghe-Zhu 2021-02-09
c011832 Donghe-Zhu 2021-02-09
a145fa7 Donghe-Zhu 2021-02-09
c344e42 Donghe-Zhu 2021-02-08
2f095d7 Donghe-Zhu 2021-02-07
1fad5f1 Donghe-Zhu 2021-02-07
ca03c39 Donghe-Zhu 2021-02-07
e2ffc14 Donghe-Zhu 2021-02-05
cd7c52c Donghe-Zhu 2021-02-04
bcf84f4 Donghe-Zhu 2021-02-02
a518739 Donghe-Zhu 2021-02-01
61666de Donghe-Zhu 2021-01-31
865b582 Donghe-Zhu 2021-01-31
3e68089 Donghe-Zhu 2021-01-31
ecf335c Donghe-Zhu 2021-01-31
a618965 Donghe-Zhu 2021-01-31
59e006e Donghe-Zhu 2021-01-31
a1c8f87 Donghe-Zhu 2021-01-31
ae5c18f Donghe-Zhu 2021-01-31
b50fe52 Donghe-Zhu 2021-01-31
ac99ae5 jens-daniel-mueller 2021-01-29
b5bdcaf Donghe-Zhu 2021-01-29
442010d Donghe-Zhu 2021-01-29
372adf5 Donghe-Zhu 2021-01-29
af8788e Donghe-Zhu 2021-01-29
21c91c9 Donghe-Zhu 2021-01-29
eded038 Donghe-Zhu 2021-01-29
541d4dd Donghe-Zhu 2021-01-29
6a75576 Donghe-Zhu 2021-01-28
16fba40 Donghe-Zhu 2021-01-28
12bc567 Donghe-Zhu 2021-01-27
ceed31b Donghe-Zhu 2021-01-27
342402d Donghe-Zhu 2021-01-27
5bad5c2 Donghe-Zhu 2021-01-27
61efb56 Donghe-Zhu 2021-01-25
48f638e Donghe-Zhu 2021-01-25
c1cec47 Donghe-Zhu 2021-01-25
05ffb0c Donghe-Zhu 2021-01-25
8b97165 Donghe-Zhu 2021-01-25
c569946 Donghe-Zhu 2021-01-24
a2f0d56 Donghe-Zhu 2021-01-23
28509fc Donghe-Zhu 2021-01-23
4c28e4a Donghe-Zhu 2021-01-22
24cc264 jens-daniel-mueller 2021-01-22
7891955 Donghe-Zhu 2021-01-21
d4cf1cb Donghe-Zhu 2021-01-21
1f3e5b6 jens-daniel-mueller 2021-01-20
0e7bdf1 jens-daniel-mueller 2021-01-15
4571843 jens-daniel-mueller 2021-01-14
b3564aa jens-daniel-mueller 2021-01-14
8d032c3 jens-daniel-mueller 2021-01-14
17dee1d jens-daniel-mueller 2021-01-13
7cdea0c jens-daniel-mueller 2021-01-06
fa85b93 jens-daniel-mueller 2021-01-06
e5cb81a Donghe-Zhu 2021-01-05
a499f10 Donghe-Zhu 2021-01-05
fb8a752 Donghe-Zhu 2020-12-23
8fae0b2 Donghe-Zhu 2020-12-21
c8b76b3 jens-daniel-mueller 2020-12-19

sessionInfo()
R version 4.0.3 (2020-10-10)
Platform: x86_64-pc-linux-gnu (64-bit)
Running under: openSUSE Leap 15.2

Matrix products: default
BLAS:   /usr/local/R-4.0.3/lib64/R/lib/libRblas.so
LAPACK: /usr/local/R-4.0.3/lib64/R/lib/libRlapack.so

locale:
 [1] LC_CTYPE=en_US.UTF-8       LC_NUMERIC=C              
 [3] LC_TIME=en_US.UTF-8        LC_COLLATE=en_US.UTF-8    
 [5] LC_MONETARY=en_US.UTF-8    LC_MESSAGES=en_US.UTF-8   
 [7] LC_PAPER=en_US.UTF-8       LC_NAME=C                 
 [9] LC_ADDRESS=C               LC_TELEPHONE=C            
[11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C       

attached base packages:
[1] stats     graphics  grDevices utils     datasets  methods   base     

other attached packages:
 [1] gt_0.2.2         corrr_0.4.3      broom_0.7.5      kableExtra_1.3.1
 [5] knitr_1.30       olsrr_0.5.3      GGally_2.0.0     lubridate_1.7.9 
 [9] metR_0.9.0       scico_1.2.0      patchwork_1.1.1  collapse_1.5.0  
[13] forcats_0.5.0    stringr_1.4.0    dplyr_1.0.2      purrr_0.3.4     
[17] readr_1.4.0      tidyr_1.1.2      tibble_3.0.4     ggplot2_3.3.3   
[21] tidyverse_1.3.0  workflowr_1.6.2 

loaded via a namespace (and not attached):
 [1] fs_1.5.0                 webshot_0.5.2            RColorBrewer_1.1-2      
 [4] httr_1.4.2               rprojroot_2.0.2          tools_4.0.3             
 [7] backports_1.1.10         R6_2.5.0                 nortest_1.0-4           
[10] DBI_1.1.0                colorspace_2.0-0         withr_2.3.0             
[13] gridExtra_2.3            tidyselect_1.1.0         curl_4.3                
[16] compiler_4.0.3           git2r_0.27.1             cli_2.2.0               
[19] rvest_0.3.6              xml2_1.3.2               sass_0.2.0              
[22] labeling_0.4.2           scales_1.1.1             checkmate_2.0.0         
[25] goftest_1.2-2            digest_0.6.27            foreign_0.8-80          
[28] rmarkdown_2.5            rio_0.5.16               pkgconfig_2.0.3         
[31] htmltools_0.5.0          highr_0.8                dbplyr_1.4.4            
[34] rlang_0.4.10             readxl_1.3.1             rstudioapi_0.13         
[37] farver_2.0.3             generics_0.1.0           jsonlite_1.7.2          
[40] zip_2.1.1                car_3.0-10               magrittr_2.0.1          
[43] Matrix_1.2-18            Rcpp_1.0.5               munsell_0.5.0           
[46] fansi_0.4.1              abind_1.4-5              lifecycle_0.2.0         
[49] stringi_1.5.3            whisker_0.4              yaml_2.2.1              
[52] carData_3.0-4            plyr_1.8.6               grid_4.0.3              
[55] blob_1.2.1               parallel_4.0.3           promises_1.1.1          
[58] crayon_1.3.4             lattice_0.20-41          haven_2.3.1             
[61] hms_0.5.3                pillar_1.4.7             reprex_0.3.0            
[64] glue_1.4.2               evaluate_0.14            RcppArmadillo_0.10.1.2.2
[67] data.table_1.13.6        modelr_0.1.8             vctrs_0.3.6             
[70] httpuv_1.5.4             cellranger_1.1.0         gtable_0.3.0            
[73] reshape_0.8.8            assertthat_0.2.1         xfun_0.20               
[76] openxlsx_4.2.3           RcppEigen_0.3.3.9.1      later_1.1.0.1           
[79] viridisLite_0.3.0        ellipsis_0.3.1           here_1.0.1