Last updated: 2021-03-04

Checks: 7 0

Knit directory: emlr_mod_v_XXX/

This reproducible R Markdown analysis was created with workflowr (version 1.6.2). The Checks tab describes the reproducibility checks that were applied when the results were created. The Past versions tab lists the development history.


Great! Since the R Markdown file has been committed to the Git repository, you know the exact version of the code that produced these results.

Great job! The global environment was empty. Objects defined in the global environment can affect the analysis in your R Markdown file in unknown ways. For reproduciblity it’s best to always run the code in an empty environment.

The command set.seed(20200707) was run prior to running the code in the R Markdown file. Setting a seed ensures that any results that rely on randomness, e.g. subsampling or permutations, are reproducible.

Great job! Recording the operating system, R version, and package versions is critical for reproducibility.

Nice! There were no cached chunks for this analysis, so you can be confident that you successfully produced the results during this run.

Great job! Using relative paths to the files within your workflowr project makes it easier to run your code on other machines.

Great! You are using Git for version control. Tracking code development and connecting the code version to the results is critical for reproducibility.

The results in this page were generated with repository version c87a098. See the Past versions tab to see a history of the changes made to the R Markdown and HTML files.

Note that you need to be careful to ensure that all relevant files for the analysis have been committed to Git prior to generating the results (you can use wflow_publish or wflow_git_commit). workflowr only checks the R Markdown file, but you know if there are other scripts or data files that it depends on. Below is the status of the Git repository when the results were generated:


Ignored files:
    Ignored:    .Rhistory
    Ignored:    .Rproj.user/

Unstaged changes:
    Modified:   data/auxillary/params_local.rds

Note that any generated files, e.g. HTML, png, CSS, etc., are not included in this status report because it is ok for generated content to have uncommitted changes.


These are the previous versions of the repository in which changes were made to the R Markdown (analysis/eMLR_model_fitting.Rmd) and HTML (docs/eMLR_model_fitting.html) files. If you’ve configured a remote Git repository (see ?wflow_git_remote), click on the hyperlinks in the table below to view the files as they were in that past version.

File Version Author Date Message
html c7892c1 Donghe-Zhu 2021-03-04 Build site.
html 924430b Donghe-Zhu 2021-03-03 Build site.
html 0d0bca1 Donghe-Zhu 2021-03-03 Build site.
html cb63c16 Donghe-Zhu 2021-03-03 Build site.
html ffda45a Donghe-Zhu 2021-03-03 Build site.
html 691ba81 Donghe-Zhu 2021-03-03 Build site.
html c5e45a2 Donghe-Zhu 2021-03-03 Build site.
html 89c3e58 Donghe-Zhu 2021-03-03 Build site.
html c407a50 Donghe-Zhu 2021-03-03 Build site.
html c911669 Donghe-Zhu 2021-03-03 Build site.
Rmd e1f9d21 Donghe-Zhu 2021-03-03 local rebuild
html b71c719 Donghe-Zhu 2021-03-01 Build site.
html 13666ca Donghe-Zhu 2021-03-01 Build site.
Rmd c3195f4 Donghe-Zhu 2021-03-01 local rebuild
html c6e60fe Donghe-Zhu 2021-03-01 Build site.
Rmd 8ef147d Donghe-Zhu 2021-03-01 local rebuild
html 7a388f7 Donghe-Zhu 2021-03-01 Build site.
html 799e913 Donghe-Zhu 2021-03-01 Build site.
Rmd aa780a7 Donghe-Zhu 2021-03-01 local rebuild
html 66ff99f Donghe-Zhu 2021-03-01 Build site.
html ac9bb7a Donghe-Zhu 2021-02-28 Build site.
html efdc047 Donghe-Zhu 2021-02-28 Build site.
html e9a7418 Donghe-Zhu 2021-02-28 Build site.
Rmd eac1b0e Donghe-Zhu 2021-02-28 local rebuild
html e152917 Donghe-Zhu 2021-02-28 Build site.
html feb991c Donghe-Zhu 2021-02-27 Build site.
Rmd 4563314 Donghe-Zhu 2021-02-27 local rebuild
html 287123c Donghe-Zhu 2021-02-27 Build site.
Rmd 764a9c2 Donghe-Zhu 2021-02-27 local rebuild
html 54d5b5b Donghe-Zhu 2021-02-27 Build site.
Rmd 2e836bf Donghe-Zhu 2021-02-27 local rebuild
html 330f064 Donghe-Zhu 2021-02-27 Build site.
Rmd f360282 Donghe-Zhu 2021-02-27 local rebuild
html adbc9bc Donghe-Zhu 2021-02-27 Build site.
Rmd a8a8f9c Donghe-Zhu 2021-02-27 local rebuild
html 5937141 Donghe-Zhu 2021-02-27 Build site.
Rmd 5f0bfca Donghe-Zhu 2021-02-27 local rebuild
html 4414bbf Donghe-Zhu 2021-02-27 Build site.
html a265efb Donghe-Zhu 2021-02-27 Build site.
html 19edd1e Donghe-Zhu 2021-02-27 Build site.
Rmd 1ae5bb4 Donghe-Zhu 2021-02-27 local rebuild
html f20483f Donghe-Zhu 2021-02-26 Build site.
html 6a2c7b3 Donghe-Zhu 2021-02-25 Build site.
html 02b976d Donghe-Zhu 2021-02-24 Build site.
html 354c224 Donghe-Zhu 2021-02-24 Build site.
Rmd d910d39 Donghe-Zhu 2021-02-24 local rebuild
html 1a0a88a Donghe-Zhu 2021-02-24 Build site.
Rmd 663e891 Donghe-Zhu 2021-02-24 local rebuild
html 57f701e Donghe-Zhu 2021-02-24 Build site.
html 06f3149 Donghe-Zhu 2021-02-16 Build site.
html 401eab3 Donghe-Zhu 2021-02-15 Build site.
html e3bba84 Donghe-Zhu 2021-02-15 Build site.
html 5dce4b1 Donghe-Zhu 2021-02-15 Build site.
Rmd 35b0f2e Donghe-Zhu 2021-02-15 local rebuild
html 4469a0c Donghe-Zhu 2021-02-13 Build site.
Rmd 8186d57 Donghe-Zhu 2021-02-10 apply nr_obs
html 5ae6a69 Donghe-Zhu 2021-02-10 Build site.
Rmd eeb6557 Donghe-Zhu 2021-02-10 local rebuild
html 05385dc Donghe-Zhu 2021-02-10 Build site.
html f791ae4 Donghe-Zhu 2021-02-09 Build site.
html f71ae34 Donghe-Zhu 2021-02-09 Build site.
html c011832 Donghe-Zhu 2021-02-09 Build site.
html a145fa7 Donghe-Zhu 2021-02-09 Build site.
Rmd 37a41c8 Donghe-Zhu 2021-02-09 local rebuild
html c344e42 Donghe-Zhu 2021-02-08 Build site.
Rmd 8f5fa79 Donghe-Zhu 2021-02-08 local rebuild
html 2f095d7 Donghe-Zhu 2021-02-07 Build site.
html 2305044 Donghe-Zhu 2021-02-07 Build site.
Rmd c3638c1 Donghe-Zhu 2021-02-07 local rebuild
html 1fad5f1 Donghe-Zhu 2021-02-07 Build site.
html ca03c39 Donghe-Zhu 2021-02-07 Build site.
html e2ffc14 Donghe-Zhu 2021-02-05 Build site.
html cd7c52c Donghe-Zhu 2021-02-04 Build site.
Rmd bcf91a8 jens-daniel-mueller 2021-02-04 separate MLR tables, added plot residuals vs location
html bcf84f4 Donghe-Zhu 2021-02-02 Build site.
html a518739 Donghe-Zhu 2021-02-01 Build site.
html 61666de Donghe-Zhu 2021-01-31 Build site.
html 865b582 Donghe-Zhu 2021-01-31 Build site.
html 3e68089 Donghe-Zhu 2021-01-31 Build site.
html ecf335c Donghe-Zhu 2021-01-31 Build site.
html a618965 Donghe-Zhu 2021-01-31 Build site.
html 59e006e Donghe-Zhu 2021-01-31 Build site.
html a1c8f87 Donghe-Zhu 2021-01-31 Build site.
html ae5c18f Donghe-Zhu 2021-01-31 Build site.
html b50fe52 Donghe-Zhu 2021-01-31 Build site.
Rmd ac99ae5 jens-daniel-mueller 2021-01-29 code review
html ac99ae5 jens-daniel-mueller 2021-01-29 code review
html b5bdcaf Donghe-Zhu 2021-01-29 Build site.
Rmd b234505 Donghe-Zhu 2021-01-29 MLR approach across all depth
html 442010d Donghe-Zhu 2021-01-29 Build site.
Rmd e67e7dd Donghe-Zhu 2021-01-29 surface equilibrium approach across all latitudes irrespective of gamma
html 372adf5 Donghe-Zhu 2021-01-29 Build site.
html af8788e Donghe-Zhu 2021-01-29 Build site.
html 21c91c9 Donghe-Zhu 2021-01-29 Build site.
html eded038 Donghe-Zhu 2021-01-29 Build site.
html 541d4dd Donghe-Zhu 2021-01-29 Build site.
html 6a75576 Donghe-Zhu 2021-01-28 Build site.
html 16fba40 Donghe-Zhu 2021-01-28 Build site.
Rmd aecf0c6 Donghe-Zhu 2021-01-28 diagnostic ploting
Rmd a02684e Donghe-Zhu 2021-01-28 error
Rmd 4584be9 Donghe-Zhu 2021-01-28 latest
html 12bc567 Donghe-Zhu 2021-01-27 Build site.
html ceed31b Donghe-Zhu 2021-01-27 Build site.
html 342402d Donghe-Zhu 2021-01-27 Build site.
html 5bad5c2 Donghe-Zhu 2021-01-27 Build site.
Rmd c2c9529 Donghe-Zhu 2021-01-27 random subsetting based on lat
html 61efb56 Donghe-Zhu 2021-01-25 Build site.
html 48f638e Donghe-Zhu 2021-01-25 Build site.
html c1cec47 Donghe-Zhu 2021-01-25 Build site.
html 05ffb0c Donghe-Zhu 2021-01-25 Build site.
html 8b97165 Donghe-Zhu 2021-01-25 Build site.
html c569946 Donghe-Zhu 2021-01-24 Build site.
html a2f0d56 Donghe-Zhu 2021-01-23 Build site.
html 28509fc Donghe-Zhu 2021-01-23 Build site.
html 4c28e4a Donghe-Zhu 2021-01-22 Build site.
html 24cc264 jens-daniel-mueller 2021-01-22 cleaned /docs before creating copies
html 88eb28f Donghe-Zhu 2021-01-21 Build site.
html 2679490 Donghe-Zhu 2021-01-21 Build site.
html 7891955 Donghe-Zhu 2021-01-21 Build site.
html d4cf1cb Donghe-Zhu 2021-01-21 Build site.
Rmd 167eeec Donghe-Zhu 2021-01-21 surface DIC calculation with atmospheric equilibrium option
html 1f3e5b6 jens-daniel-mueller 2021-01-20 Build site.
html 0e7bdf1 jens-daniel-mueller 2021-01-15 cleaning template repository
html 73cbef3 jens-daniel-mueller 2021-01-15 Build site.
html 4571843 jens-daniel-mueller 2021-01-14 revision and html deleted for template copying
html 23151cd jens-daniel-mueller 2021-01-14 Build site.
html b3564aa jens-daniel-mueller 2021-01-14 Build site.
html 8d032c3 jens-daniel-mueller 2021-01-14 Build site.
html 022871c Donghe-Zhu 2021-01-13 Build site.
Rmd d44f36f Donghe-Zhu 2021-01-13 reorder analysis final
html 17dee1d jens-daniel-mueller 2021-01-13 Build site.
Rmd 9e04fd7 jens-daniel-mueller 2021-01-13 local rebuild after revision
html a076226 Donghe-Zhu 2021-01-11 Build site.
Rmd 52eff18 Donghe-Zhu 2021-01-09 Implemet model_run and subsetting
html 7cdea0c jens-daniel-mueller 2021-01-06 Build site.
Rmd b5934dd jens-daniel-mueller 2021-01-06 local rebuild after revision
html fa85b93 jens-daniel-mueller 2021-01-06 Build site.
html e5cb81a Donghe-Zhu 2021-01-05 Build site.
Rmd 608cc45 Donghe-Zhu 2021-01-05 modification of analysis
html a499f10 Donghe-Zhu 2021-01-05 Build site.
Rmd 715bdb4 Donghe-Zhu 2021-01-02 model modification
html fb8a752 Donghe-Zhu 2020-12-23 Build site.
Rmd 82e3c9c Donghe-Zhu 2020-12-23 first build after creating model template
html 8fae0b2 Donghe-Zhu 2020-12-21 Build site.
Rmd 00a1322 Donghe-Zhu 2020-12-21 first build after creating model template
Rmd d73ae35 Donghe-Zhu 2020-12-21 first version with lm error
html c8b76b3 jens-daniel-mueller 2020-12-19 Build site.
Rmd b5fedce jens-daniel-mueller 2020-12-19 first build after creating model template
Rmd 8e8abf5 Jens Müller 2020-12-18 Initial commit

1 Required data

Required are:

  • cleaned and prepared GLODAP-based synthetic model subsetting file
GLODAP <-
  read_csv(paste(path_version_data,
                 "GLODAPv2.2020_MLR_fitting_ready.csv",
                 sep = ""))

2 Predictor combinations

Find all possible combinations of following considered predictor variables:

  • sal, temp, aou, nitrate, silicate, phosphate, phosphate_star
# the following code is a workaround to find all predictor combinations
# using the olsrr package and fit all models for one era, slab, and basin

i_basin <- unique(GLODAP$basin)[1]
i_era   <- unique(GLODAP$era)[1]

# subset one basin and era for fitting
GLODAP_basin_era <- GLODAP %>%
  filter(basin == i_basin, era == i_era)

i_gamma_slab <- unique(GLODAP_basin_era$gamma_slab)[1]
print(i_gamma_slab)

# subset one gamma slab
GLODAP_basin_era_slab <- GLODAP_basin_era %>%
  filter(gamma_slab == i_gamma_slab)

# fit the full linear model, i.e. all predictor combinations
lm_full <- lm(paste(
  params_local$MLR_target,
  paste(params_local$MLR_predictors, collapse = " + "),
  sep = " ~ "
),
data = GLODAP_basin_era_slab)

# fit linear models for all possible predictor combinations
# unfortunately, this functions does not provide model coefficients (yet)
lm_all <- ols_step_all_possible(lm_full)

# convert to tibble
lm_all <- as_tibble(lm_all)

# extract relevant columns and format model formula
lm_all <- lm_all %>% 
  select(n, predictors) %>% 
  mutate(lm_coeff = str_replace_all(predictors, " ", " + "),
         lm_coeff = paste(params_local$MLR_target, "~", lm_coeff))

# remove certain predictor combinations
# lm_rm_ph <- lm_all %>%
#   filter(str_detect(lm_coeff, "phosphate_star")) %>%
#   mutate(lm_coeff_filter = str_remove(lm_coeff, "phosphate_star")) %>%
#   filter(
#     str_detect(lm_coeff_filter, "oxygen") &
#       str_detect(lm_coeff_filter, "phosphate")
#   )

# lm_rm_si <- lm_all %>%
#   filter(str_detect(lm_coeff, "silicate_star")) %>%
#   mutate(lm_coeff_filter = str_remove(lm_coeff, "silicate_star")) %>%
#   filter(str_detect(lm_coeff_filter, "silicate"))

# lm_rm_o2 <- lm_all %>%
#   filter(str_detect(lm_coeff, "phosphate_star")) %>%
#   mutate(lm_coeff_filter = str_remove(lm_coeff, "phosphate_star")) %>%
#   filter(
#     str_detect(lm_coeff_filter, "phosphate") &
#       str_detect(lm_coeff_filter, "oxygen")
#   )

# lm_rm <- bind_rows(lm_rm_ph, lm_rm_o2) %>%
#   select(-lm_coeff_filter) %>%
#   unique()


# remove temp sal predictor combination
lm_all <- lm_all %>%
  # filter(!(
  #   str_detect(lm_coeff, "temp") &
  #     str_detect(lm_coeff, "phosphate_star")
  # )) %>%
  mutate(lm_coeff_filter = str_remove(lm_coeff, "phosphate_star")) %>%
  filter(!(str_detect(lm_coeff_filter, "nitrate") &
             str_detect(lm_coeff_filter, "phosphate")
  )) %>%
  filter(!(
    str_detect(lm_coeff_filter, "temp") &
      str_detect(lm_coeff_filter, "sal")
  )) %>%
  filter(!(
    str_detect(lm_coeff_filter, "oxygen") &
      str_detect(lm_coeff_filter, "aou")
  )) %>%
  select(-lm_coeff_filter)

# lm_rm <- lm_rm_ph %>%
#   select(-lm_coeff_filter) %>%
#   unique()
# 
# lm_all <- anti_join(lm_all, lm_rm)

# remove helper objects
rm(
  i_gamma_slab,
  i_era,
  i_basin,
  GLODAP_basin_era,
  GLODAP_basin_era_slab,
  lm_full,
  lm_rm_ph,
  lm_rm_si,
  lm_rm_o2,
  lm_rm
)

3 Apply predictor threshold

Select combinations with a total number of predictors in the range:

  • Minimum: 3
  • Maximum: 9
lm_all <- lm_all %>% 
  filter(n >= params_local$MLR_predictors_min,
         n <= params_local$MLR_predictors_max)

This results in a total number of MLR models of:

  • 45

4 Fit all models

Individual linear regression models were fitted for the chosen target variable:

  • cstar_tref

as a function of each predictor combination. Fitting was performed separately within each basin, era, and slab. Model diagnostics, such as the root mean squared error (RMSE), were calculated for each fitted model.

# loop across all basins, era, gamma slabs, and MLRs
# fit all MLR models
for (i_basin in unique(GLODAP$basin)) {
  for (i_era in unique(GLODAP$era)) {
    #i_basin <- unique(GLODAP$basin)[1]
    #i_era   <- unique(GLODAP$era)[1]
    print(i_basin)
    print(i_era)
    
    GLODAP_basin_era <- GLODAP %>%
      filter(basin == i_basin, era == i_era)
    
    for (i_gamma_slab in unique(GLODAP_basin_era$gamma_slab)) {
      #i_gamma_slab <- unique(GLODAP_basin_era$gamma_slab)[1]
      print(i_gamma_slab)
      
      GLODAP_basin_era_slab <- GLODAP_basin_era %>%
        filter(gamma_slab == i_gamma_slab)
      
      # number of observations used for each fitting model
      i_nr_obs = nrow(GLODAP_basin_era_slab)
      
      for (i_predictors in unique(lm_all$predictors)) {
        #i_predictors <- unique(lm_all$predictors)[1]
        
        # extract one model definition
        i_lm <- lm_all %>%
          filter(predictors == i_predictors) %>%
          select(lm_coeff) %>%
          pull()
        
        # extract number of predictors
        i_n_predictors <- lm_all %>%
          filter(predictors == i_predictors) %>%
          select(n) %>%
          pull()
        
        if (i_nr_obs > i_n_predictors) {
          # fit model
          if (params_local$MLR_type == "rlm") {
            i_lm_fit <- MASS::rlm(as.formula(i_lm),
                                  data = GLODAP_basin_era_slab)
          }
          
          if (params_local$MLR_type == "lm") {
            i_lm_fit <- lm(as.formula(i_lm),
                           data = GLODAP_basin_era_slab)
          }
          
          # find max predictor correlation
          i_cor_max <- GLODAP_basin_era_slab %>%
            select(!!!syms(str_split(i_predictors, " ",
                                     simplify = TRUE))) %>%
            correlate(quiet = TRUE) %>%
            select(-term) %>%
            abs() %>%
            max(na.rm = TRUE)
          
          # calculate root mean squared error
          i_rmse <- sqrt(c(crossprod(i_lm_fit$residuals)) /
                           length(i_lm_fit$residuals))
          
          # calculate maximum residual
          i_resid_max <- max(abs(i_lm_fit$residuals))
          
          # calculate Akaike information criterion aic
          i_aic <- AIC(i_lm_fit)
          
          # collect model coefficients and diagnostics
          coefficients <- tidy(i_lm_fit)
          
          coefficients <- coefficients %>%
            mutate(
              basin = i_basin,
              era = i_era,
              gamma_slab = i_gamma_slab,
              model = i_lm,
              nr_obs = i_nr_obs,
              rmse = i_rmse,
              aic = i_aic,
              resid_max = i_resid_max,
              n_predictors = i_n_predictors,
              na_predictor = anyNA(coefficients$estimate),
              cor_max = i_cor_max
            )
          
          if (exists("lm_all_fitted")) {
            lm_all_fitted <- bind_rows(lm_all_fitted, coefficients)
          }
          
          if (!exists("lm_all_fitted")) {
            lm_all_fitted <- coefficients
          }
        }
      }
    }
  }
}

rm(
  i_lm_fit,
  coefficients,
  i_rmse,
  GLODAP_basin_era,
  GLODAP_basin_era_slab,
  i_lm,
  i_basin,
  i_era,
  i_gamma_slab,
  i_nr_obs,
  i_predictors,
  i_aic,
  i_n_predictors,
  i_resid_max
)

5 Prepare coeffcients

Coefficients are prepared for the mapping of Cant and the chosen target variable.

5.1 Formatting

# select relevant columns
lm_all_fitted <- lm_all_fitted %>%
  select(
    basin,
    gamma_slab,
    era,
    model,
    nr_obs,
    n_predictors,
    term,
    estimate,
    rmse,
    aic,
    resid_max,
    na_predictor,
    cor_max
  )

# set coefficient to zero if not fitted (=NA)
lm_all_fitted <- lm_all_fitted %>%
  mutate(estimate = if_else(is.na(estimate), 0, estimate))

# Prepare model coefficients for mapping of target variable
lm_all_fitted_wide <- lm_all_fitted %>%
  pivot_wider(
    values_from = estimate,
    names_from = term,
    names_prefix = "coeff_",
    values_fill = 0
  )

5.2 Predictor selection

Within each basin and slab, the following number of best linear regression models was selected:

  • 5

The criterion used to select the best models was:

  • aic

The criterion was summed up for two adjacent eras, and the models with lowest summed values were selected.

Please note, that currently the lm() function produces NAs for some predictors. It is not yet entirely clear when this happens, but presumably it is caused by some form of collinearity between predictors, such that including another predictor does not help to explain the target variable any better. The issues also expresses as exactly identical rmse values of different models. As an interim solution, models with fitted NA predictors were not included.

# remove models with predictors fitted as NA

lm_all_fitted_wide <- lm_all_fitted_wide %>%
  filter(na_predictor == FALSE)
# calculate RMSE sum for adjacent eras
lm_all_fitted_wide_eras <- lm_all_fitted_wide  %>%
  select(basin, gamma_slab, model, era, nr_obs, rmse, aic, resid_max) %>%
  arrange(era) %>%
  group_by(basin, gamma_slab, model) %>%
  mutate(
    eras = paste(lag(era), era, sep = " --> "),
    rmse_sum = rmse + lag(rmse),
    aic_sum = aic + lag(aic)
  ) %>%
  ungroup() %>%
  select(-c(era)) %>%
  drop_na()

# subset models with lowest summed criterion
# chose which criterion is applied

if (params_local$MLR_criterion == "aic") {
  lm_best <- lm_all_fitted_wide_eras %>%
    group_by(basin, gamma_slab, eras) %>%
    slice_min(order_by = aic_sum,
              with_ties = FALSE,
              n = params_local$MLR_number) %>%
    ungroup() %>%
    arrange(basin, gamma_slab, eras, model)
} else {
  lm_best <- lm_all_fitted_wide_eras %>%
    group_by(basin, gamma_slab, eras) %>%
    slice_min(order_by = rmse_sum,
              with_ties = FALSE,
              n = params_local$MLR_number) %>%
    ungroup() %>%
    arrange(basin, gamma_slab, eras, model)
}

5.3 RMSE tables

5.3.1 per model

lm_best %>%
  kable() %>%
  add_header_above() %>%
  kable_styling() %>%
  scroll_box(width = "100%", height = "400px")
basin gamma_slab model nr_obs rmse aic resid_max eras rmse_sum aic_sum
Atlantic (-Inf,26] cstar_tref ~ sal + aou + nitrate + silicate + phosphate_star 281 1.5970497 1074.5482 5.875642 1982-1990 –> 1991-2014 2.8795435 1452.117
Atlantic (-Inf,26] cstar_tref ~ sal + aou + phosphate + phosphate_star 281 1.0960503 860.9862 4.424911 1982-1990 –> 1991-2014 2.0703119 1176.630
Atlantic (-Inf,26] cstar_tref ~ sal + aou + silicate + phosphate + phosphate_star 281 1.0946847 862.2856 4.363468 1982-1990 –> 1991-2014 2.0682944 1179.784
Atlantic (-Inf,26] cstar_tref ~ temp + aou + phosphate + phosphate_star 281 1.5046238 1039.0446 7.418118 1982-1990 –> 1991-2014 2.6631295 1392.448
Atlantic (-Inf,26] cstar_tref ~ temp + aou + silicate + phosphate + phosphate_star 281 1.4977854 1038.4845 7.157446 1982-1990 –> 1991-2014 2.6482942 1392.378
Atlantic (-Inf,26] cstar_tref ~ sal + aou + phosphate + phosphate_star 48 1.2963422 173.1346 3.559537 1991-2014 –> 2015-2019 2.3923925 1034.121
Atlantic (-Inf,26] cstar_tref ~ sal + aou + silicate + phosphate + phosphate_star 48 1.1767705 165.8444 3.129669 1991-2014 –> 2015-2019 2.2714552 1028.130
Atlantic (-Inf,26] cstar_tref ~ sal + aou + silicate + phosphate_star 48 1.6723887 197.5864 3.701869 1991-2014 –> 2015-2019 3.2707700 1270.603
Atlantic (-Inf,26] cstar_tref ~ temp + aou + phosphate + phosphate_star 48 1.6823912 198.1588 5.164384 1991-2014 –> 2015-2019 3.1870150 1237.203
Atlantic (-Inf,26] cstar_tref ~ temp + aou + silicate + phosphate + phosphate_star 48 1.5812099 194.2044 4.461200 1991-2014 –> 2015-2019 3.0789953 1232.689
Atlantic (26,26.5] cstar_tref ~ sal + aou + silicate + phosphate + phosphate_star 1966 3.5233536 10545.2792 13.102326 1982-1990 –> 1991-2014 6.7273892 14604.805
Atlantic (26,26.5] cstar_tref ~ temp + aou + nitrate + phosphate_star 1966 4.1918832 11226.4125 14.679512 1982-1990 –> 1991-2014 8.1225145 15604.011
Atlantic (26,26.5] cstar_tref ~ temp + aou + nitrate + silicate 1966 4.0484955 11089.5602 17.060255 1982-1990 –> 1991-2014 7.9203491 15443.564
Atlantic (26,26.5] cstar_tref ~ temp + aou + nitrate + silicate + phosphate_star 1966 4.0441047 11087.2934 17.587936 1982-1990 –> 1991-2014 7.9050840 15438.893
Atlantic (26,26.5] cstar_tref ~ temp + aou + silicate + phosphate + phosphate_star 1966 4.2825005 11312.5061 14.621009 1982-1990 –> 1991-2014 8.3106200 15730.471
Atlantic (26,26.5] cstar_tref ~ sal + aou + silicate + phosphate + phosphate_star 389 3.7055748 2136.9884 10.789649 1991-2014 –> 2015-2019 7.2289284 12682.268
Atlantic (26,26.5] cstar_tref ~ temp + aou + nitrate + phosphate_star 389 4.1214445 2217.7407 11.335208 1991-2014 –> 2015-2019 8.3133277 13444.153
Atlantic (26,26.5] cstar_tref ~ temp + aou + nitrate + silicate 389 3.9337989 2181.4873 12.837679 1991-2014 –> 2015-2019 7.9822945 13271.048
Atlantic (26,26.5] cstar_tref ~ temp + aou + nitrate + silicate + phosphate_star 389 3.9021294 2177.1986 13.677281 1991-2014 –> 2015-2019 7.9462341 13264.492
Atlantic (26,26.5] cstar_tref ~ temp + aou + silicate + phosphate + phosphate_star 389 4.2683212 2246.9838 11.089308 1991-2014 –> 2015-2019 8.5508217 13559.490
Atlantic (26.5,26.75] cstar_tref ~ aou + silicate + phosphate + phosphate_star 2571 3.2707332 13401.5249 11.597074 1982-1990 –> 1991-2014 6.2375318 18050.406
Atlantic (26.5,26.75] cstar_tref ~ sal + aou + silicate + phosphate 2571 3.2695097 13399.6010 11.272296 1982-1990 –> 1991-2014 6.3120152 18095.098
Atlantic (26.5,26.75] cstar_tref ~ sal + aou + silicate + phosphate + phosphate_star 2571 3.2048798 13298.9386 11.602630 1982-1990 –> 1991-2014 6.1423154 17931.418
Atlantic (26.5,26.75] cstar_tref ~ temp + aou + nitrate + silicate + phosphate_star 2571 3.2817369 13420.7950 10.510535 1982-1990 –> 1991-2014 6.3050670 18106.595
Atlantic (26.5,26.75] cstar_tref ~ temp + aou + silicate + phosphate + phosphate_star 2571 3.1545751 13217.5882 10.240198 1982-1990 –> 1991-2014 6.0058253 17794.976
Atlantic (26.5,26.75] cstar_tref ~ aou + silicate + phosphate + phosphate_star 454 3.5529188 2451.5309 11.528924 1991-2014 –> 2015-2019 6.8236521 15853.056
Atlantic (26.5,26.75] cstar_tref ~ sal + aou + silicate + phosphate 454 3.4518490 2425.3265 10.422776 1991-2014 –> 2015-2019 6.7213587 15824.928
Atlantic (26.5,26.75] cstar_tref ~ sal + aou + silicate + phosphate + phosphate_star 454 3.4335594 2422.5027 10.688996 1991-2014 –> 2015-2019 6.6384392 15721.441
Atlantic (26.5,26.75] cstar_tref ~ temp + aou + nitrate + silicate + phosphate_star 454 3.5029857 2440.6792 9.732434 1991-2014 –> 2015-2019 6.7847226 15861.474
Atlantic (26.5,26.75] cstar_tref ~ temp + aou + silicate + phosphate + phosphate_star 454 3.4078423 2415.6762 11.246610 1991-2014 –> 2015-2019 6.5624174 15633.264
Atlantic (26.75,27] cstar_tref ~ aou + silicate + phosphate + phosphate_star 4308 2.0192666 18292.3336 24.415011 1982-1990 –> 1991-2014 3.5341792 24075.030
Atlantic (26.75,27] cstar_tref ~ sal + aou + silicate + phosphate + phosphate_star 4308 1.9473419 17981.8397 23.294561 1982-1990 –> 1991-2014 3.4500119 23741.008
Atlantic (26.75,27] cstar_tref ~ temp + aou + nitrate + silicate + phosphate_star 4308 2.1148970 18693.0112 21.732554 1982-1990 –> 1991-2014 3.7647656 24746.180
Atlantic (26.75,27] cstar_tref ~ temp + aou + silicate + phosphate 4308 2.1278543 18743.6374 25.188019 1982-1990 –> 1991-2014 3.7666335 24773.590
Atlantic (26.75,27] cstar_tref ~ temp + aou + silicate + phosphate + phosphate_star 4308 1.9965941 18197.0453 29.931685 1982-1990 –> 1991-2014 3.3331186 23587.594
Atlantic (26.75,27] cstar_tref ~ aou + silicate + phosphate + phosphate_star 920 2.5300093 4330.7772 17.628304 1991-2014 –> 2015-2019 4.5492758 22623.111
Atlantic (26.75,27] cstar_tref ~ sal + aou + silicate + phosphate 920 2.4976736 4307.1088 15.637246 1991-2014 –> 2015-2019 4.6336582 23083.604
Atlantic (26.75,27] cstar_tref ~ sal + aou + silicate + phosphate + phosphate_star 920 2.4377288 4264.4098 16.501545 1991-2014 –> 2015-2019 4.3850707 22246.249
Atlantic (26.75,27] cstar_tref ~ temp + aou + nitrate + silicate + phosphate_star 920 2.6177264 4395.4902 13.486569 1991-2014 –> 2015-2019 4.7326234 23088.501
Atlantic (26.75,27] cstar_tref ~ temp + aou + silicate + phosphate + phosphate_star 920 2.1790130 4057.9715 15.347220 1991-2014 –> 2015-2019 4.1756071 22255.017
Atlantic (27,27.25] cstar_tref ~ sal + aou + nitrate + silicate + phosphate_star 3715 2.1372788 16200.0466 10.896405 1982-1990 –> 1991-2014 4.4474409 21886.275
Atlantic (27,27.25] cstar_tref ~ sal + aou + silicate + phosphate 3715 1.8970672 15312.2099 10.691809 1982-1990 –> 1991-2014 3.5298360 20123.978
Atlantic (27,27.25] cstar_tref ~ sal + aou + silicate + phosphate + phosphate_star 3715 1.8478236 15118.7964 10.457644 1982-1990 –> 1991-2014 3.2804294 19603.778
Atlantic (27,27.25] cstar_tref ~ temp + aou + nitrate + silicate + phosphate_star 3715 2.0285304 15812.0383 19.125736 1982-1990 –> 1991-2014 3.5007731 20365.632
Atlantic (27,27.25] cstar_tref ~ temp + aou + silicate + phosphate + phosphate_star 3715 2.2555753 16600.3128 22.155256 1982-1990 –> 1991-2014 4.1503801 21788.261
Atlantic (27,27.25] cstar_tref ~ sal + aou + nitrate + silicate + phosphate_star 812 2.2225970 3615.4065 11.815881 1991-2014 –> 2015-2019 4.3598758 19815.453
Atlantic (27,27.25] cstar_tref ~ sal + aou + silicate + phosphate 812 2.3083874 3674.9121 13.926205 1991-2014 –> 2015-2019 4.2054546 18987.122
Atlantic (27,27.25] cstar_tref ~ sal + aou + silicate + phosphate + phosphate_star 812 2.2983822 3669.8579 14.337448 1991-2014 –> 2015-2019 4.1462057 18788.654
Atlantic (27,27.25] cstar_tref ~ sal + aou + silicate + phosphate_star 812 2.3348320 3693.4106 15.182007 1991-2014 –> 2015-2019 4.5098292 20021.437
Atlantic (27,27.25] cstar_tref ~ temp + aou + nitrate + silicate + phosphate_star 812 2.6050612 3873.2650 19.387030 1991-2014 –> 2015-2019 4.6335915 19685.303
Atlantic (27.25,27.5] cstar_tref ~ sal + aou + nitrate + silicate 3732 2.5388851 17557.3528 13.187909 1982-1990 –> 1991-2014 5.2446256 24590.178
Atlantic (27.25,27.5] cstar_tref ~ sal + aou + nitrate + silicate + phosphate_star 3732 2.4113475 17174.6633 13.868034 1982-1990 –> 1991-2014 5.0602590 24147.761
Atlantic (27.25,27.5] cstar_tref ~ sal + aou + silicate + phosphate + phosphate_star 3732 2.6683418 17930.5541 21.318709 1982-1990 –> 1991-2014 4.6230922 24019.951
Atlantic (27.25,27.5] cstar_tref ~ temp + aou + nitrate + silicate 3732 2.2200185 16555.6132 12.206475 1982-1990 –> 1991-2014 3.8094265 22041.342
Atlantic (27.25,27.5] cstar_tref ~ temp + aou + nitrate + silicate + phosphate_star 3732 2.0866502 16095.1770 16.105288 1982-1990 –> 1991-2014 3.6659055 21564.271
Atlantic (27.25,27.5] cstar_tref ~ aou + nitrate + silicate + phosphate_star 826 3.1231742 4237.4664 20.774319 1991-2014 –> 2015-2019 5.7928271 22169.687
Atlantic (27.25,27.5] cstar_tref ~ sal + aou + nitrate + silicate 826 2.9996057 4170.7768 16.886815 1991-2014 –> 2015-2019 5.5384907 21728.130
Atlantic (27.25,27.5] cstar_tref ~ sal + aou + nitrate + silicate + phosphate_star 826 2.8794169 4105.2215 15.347919 1991-2014 –> 2015-2019 5.2907644 21279.885
Atlantic (27.25,27.5] cstar_tref ~ temp + aou + nitrate + silicate 826 3.1761584 4265.2573 12.392938 1991-2014 –> 2015-2019 5.3961769 20820.871
Atlantic (27.25,27.5] cstar_tref ~ temp + aou + nitrate + silicate + phosphate_star 826 2.9050667 4119.8724 14.809197 1991-2014 –> 2015-2019 4.9917169 20215.049
Atlantic (27.5,27.75] cstar_tref ~ sal + aou + phosphate 5157 2.7500121 25078.6292 13.726799 1982-1990 –> 1991-2014 5.1173390 33408.623
Atlantic (27.5,27.75] cstar_tref ~ sal + aou + phosphate + phosphate_star 5157 2.7076980 24920.6951 14.283002 1982-1990 –> 1991-2014 4.7553820 32723.539
Atlantic (27.5,27.75] cstar_tref ~ sal + aou + silicate + phosphate 5157 2.4686086 23967.2264 15.019467 1982-1990 –> 1991-2014 4.7797909 32211.660
Atlantic (27.5,27.75] cstar_tref ~ sal + aou + silicate + phosphate + phosphate_star 5157 2.3773223 23580.5957 14.669631 1982-1990 –> 1991-2014 4.3087512 31172.216
Atlantic (27.5,27.75] cstar_tref ~ temp + aou + nitrate + silicate + phosphate_star 5157 2.9980522 25973.3203 15.681982 1982-1990 –> 1991-2014 5.0926535 33860.805
Atlantic (27.5,27.75] cstar_tref ~ sal + aou + nitrate + silicate + phosphate_star 1072 3.2539734 5585.8602 14.985024 1991-2014 –> 2015-2019 6.0866911 30974.106
Atlantic (27.5,27.75] cstar_tref ~ sal + aou + phosphate 1072 3.4913525 5732.8243 14.794275 1991-2014 –> 2015-2019 6.2413646 30811.453
Atlantic (27.5,27.75] cstar_tref ~ sal + aou + phosphate + phosphate_star 1072 3.4866881 5731.9580 14.513260 1991-2014 –> 2015-2019 6.1943861 30652.653
Atlantic (27.5,27.75] cstar_tref ~ sal + aou + silicate + phosphate 1072 2.9351550 5362.7782 15.988010 1991-2014 –> 2015-2019 5.4037636 29330.005
Atlantic (27.5,27.75] cstar_tref ~ sal + aou + silicate + phosphate + phosphate_star 1072 2.9347624 5364.4914 15.956338 1991-2014 –> 2015-2019 5.3120846 28945.087
Atlantic (27.75,27.85] cstar_tref ~ sal + aou + nitrate + silicate 1798 1.9632966 7540.4545 13.814538 1982-1990 –> 1991-2014 4.0157042 10472.897
Atlantic (27.75,27.85] cstar_tref ~ sal + aou + nitrate + silicate + phosphate_star 1798 1.9129872 7449.1058 14.706514 1982-1990 –> 1991-2014 3.9231962 10355.170
Atlantic (27.75,27.85] cstar_tref ~ sal + aou + phosphate + phosphate_star 1798 1.9249308 7469.4875 12.924585 1982-1990 –> 1991-2014 3.6233666 10143.338
Atlantic (27.75,27.85] cstar_tref ~ sal + aou + silicate + phosphate 1798 1.7788535 7185.6877 12.707965 1982-1990 –> 1991-2014 3.6428524 9986.599
Atlantic (27.75,27.85] cstar_tref ~ sal + aou + silicate + phosphate + phosphate_star 1798 1.5988572 6804.0667 13.326789 1982-1990 –> 1991-2014 3.2697013 9457.544
Atlantic (27.75,27.85] cstar_tref ~ sal + aou + nitrate + silicate 388 1.9377000 1626.4216 12.861648 1991-2014 –> 2015-2019 3.9009966 9166.876
Atlantic (27.75,27.85] cstar_tref ~ sal + aou + nitrate + silicate + phosphate_star 388 1.9240349 1622.9297 13.214866 1991-2014 –> 2015-2019 3.8370221 9072.036
Atlantic (27.75,27.85] cstar_tref ~ sal + aou + phosphate + phosphate_star 388 2.4064533 1794.5438 11.603279 1991-2014 –> 2015-2019 4.3313842 9264.031
Atlantic (27.75,27.85] cstar_tref ~ sal + aou + silicate + phosphate 388 1.7783613 1559.8336 11.935868 1991-2014 –> 2015-2019 3.5572149 8745.521
Atlantic (27.75,27.85] cstar_tref ~ sal + aou + silicate + phosphate + phosphate_star 388 1.6657663 1511.0776 12.251134 1991-2014 –> 2015-2019 3.2646235 8315.144
Atlantic (27.85,27.95] cstar_tref ~ aou + silicate + phosphate + phosphate_star 1846 3.3161267 9676.6813 39.654130 1982-1990 –> 1991-2014 6.1933002 12818.025
Atlantic (27.85,27.95] cstar_tref ~ sal + aou + phosphate + phosphate_star 1846 3.3139048 9674.2067 49.157410 1982-1990 –> 1991-2014 6.1000285 12774.904
Atlantic (27.85,27.95] cstar_tref ~ sal + aou + silicate + phosphate + phosphate_star 1846 3.3069740 9668.4770 46.300562 1982-1990 –> 1991-2014 6.0910062 12770.225
Atlantic (27.85,27.95] cstar_tref ~ temp + aou + phosphate + phosphate_star 1846 3.1543325 9492.0053 24.179391 1982-1990 –> 1991-2014 6.0650918 12648.019
Atlantic (27.85,27.95] cstar_tref ~ temp + aou + silicate + phosphate + phosphate_star 1846 3.1235955 9457.8527 23.883862 1982-1990 –> 1991-2014 5.9935225 12598.009
Atlantic (27.85,27.95] cstar_tref ~ aou + silicate + phosphate + phosphate_star 410 3.5342728 2210.7858 23.010237 1991-2014 –> 2015-2019 6.8503996 11887.467
Atlantic (27.85,27.95] cstar_tref ~ sal + aou + phosphate + phosphate_star 410 3.0920214 2101.1661 20.417292 1991-2014 –> 2015-2019 6.4059262 11775.373
Atlantic (27.85,27.95] cstar_tref ~ sal + aou + silicate + phosphate + phosphate_star 410 3.0009171 2078.6423 20.359135 1991-2014 –> 2015-2019 6.3078911 11747.119
Atlantic (27.85,27.95] cstar_tref ~ temp + aou + phosphate + phosphate_star 410 3.4823993 2198.6612 22.611128 1991-2014 –> 2015-2019 6.6367318 11690.667
Atlantic (27.85,27.95] cstar_tref ~ temp + aou + silicate + phosphate + phosphate_star 410 3.4676728 2197.1862 22.301119 1991-2014 –> 2015-2019 6.5912683 11655.039
Atlantic (27.95,28.05] cstar_tref ~ sal + aou + phosphate + phosphate_star 2233 4.7693006 13325.7632 25.970236 1982-1990 –> 1991-2014 9.4903802 18406.248
Atlantic (27.95,28.05] cstar_tref ~ sal + aou + silicate + phosphate + phosphate_star 2233 4.6961681 13258.7510 25.199285 1982-1990 –> 1991-2014 9.3288340 18308.984
Atlantic (27.95,28.05] cstar_tref ~ temp + aou + nitrate + phosphate_star 2233 4.1218059 12674.1368 23.182302 1982-1990 –> 1991-2014 8.1736376 17493.828
Atlantic (27.95,28.05] cstar_tref ~ temp + aou + nitrate + silicate + phosphate_star 2233 3.7552909 12260.2378 28.317404 1982-1990 –> 1991-2014 7.5088933 16951.500
Atlantic (27.95,28.05] cstar_tref ~ temp + aou + silicate + phosphate + phosphate_star 2233 4.7510773 13310.6662 22.489256 1982-1990 –> 1991-2014 9.4174969 18373.284
Atlantic (27.95,28.05] cstar_tref ~ sal + aou + phosphate + phosphate_star 460 4.1127155 2618.3803 23.347732 1991-2014 –> 2015-2019 8.8820161 15944.143
Atlantic (27.95,28.05] cstar_tref ~ sal + aou + silicate + phosphate + phosphate_star 460 4.0167547 2598.6598 22.883115 1991-2014 –> 2015-2019 8.7129228 15857.411
Atlantic (27.95,28.05] cstar_tref ~ temp + aou + nitrate + phosphate_star 460 3.4687913 2461.7252 15.116927 1991-2014 –> 2015-2019 7.5905972 15135.862
Atlantic (27.95,28.05] cstar_tref ~ temp + aou + nitrate + silicate + phosphate_star 460 3.0480487 2344.7649 16.197499 1991-2014 –> 2015-2019 6.8033396 14605.003
Atlantic (27.95,28.05] cstar_tref ~ temp + aou + silicate + phosphate + phosphate_star 460 4.1844332 2636.2850 24.305825 1991-2014 –> 2015-2019 8.9355105 15946.951
Atlantic (28.05,28.1] cstar_tref ~ aou + silicate + phosphate + phosphate_star 1452 1.0913755 4386.5198 11.296660 1982-1990 –> 1991-2014 2.0055753 5836.749
Atlantic (28.05,28.1] cstar_tref ~ sal + aou + phosphate + phosphate_star 1452 1.0144309 4174.2052 8.300201 1982-1990 –> 1991-2014 1.8560074 5534.875
Atlantic (28.05,28.1] cstar_tref ~ sal + aou + silicate + phosphate + phosphate_star 1452 1.0027386 4142.5395 7.631696 1982-1990 –> 1991-2014 1.8436861 5504.400
Atlantic (28.05,28.1] cstar_tref ~ temp + aou + phosphate + phosphate_star 1452 1.0455690 4262.0033 11.521015 1982-1990 –> 1991-2014 1.9553590 5707.001
Atlantic (28.05,28.1] cstar_tref ~ temp + aou + silicate + phosphate + phosphate_star 1452 0.9575190 4008.5357 12.592388 1982-1990 –> 1991-2014 1.7831768 5350.543
Atlantic (28.05,28.1] cstar_tref ~ aou + silicate + phosphate + phosphate_star 321 1.2664670 1074.6189 11.543084 1991-2014 –> 2015-2019 2.3578425 5461.139
Atlantic (28.05,28.1] cstar_tref ~ sal + aou + phosphate + phosphate_star 321 1.1416732 1008.0203 7.946765 1991-2014 –> 2015-2019 2.1561041 5182.225
Atlantic (28.05,28.1] cstar_tref ~ sal + aou + silicate + phosphate + phosphate_star 321 1.0609196 962.9239 6.432098 1991-2014 –> 2015-2019 2.0636582 5105.463
Atlantic (28.05,28.1] cstar_tref ~ temp + aou + phosphate + phosphate_star 321 1.2025847 1041.3903 12.216957 1991-2014 –> 2015-2019 2.2481537 5303.394
Atlantic (28.05,28.1] cstar_tref ~ temp + aou + silicate + phosphate + phosphate_star 321 1.1680948 1024.7087 12.938304 1991-2014 –> 2015-2019 2.1256138 5033.244
Atlantic (28.1,28.15] cstar_tref ~ aou + silicate + phosphate + phosphate_star 1681 0.8020092 4040.6957 10.234036 1982-1990 –> 1991-2014 1.4492943 5410.574
Atlantic (28.1,28.15] cstar_tref ~ sal + aou + nitrate + silicate + phosphate_star 1681 0.7955252 4015.4048 6.805246 1982-1990 –> 1991-2014 1.4626648 5428.977
Atlantic (28.1,28.15] cstar_tref ~ sal + aou + phosphate + phosphate_star 1681 0.7354492 3749.4170 6.172766 1982-1990 –> 1991-2014 1.3754610 5103.701
Atlantic (28.1,28.15] cstar_tref ~ sal + aou + silicate + phosphate + phosphate_star 1681 0.7151105 3657.1316 6.149630 1982-1990 –> 1991-2014 1.3064060 4904.160
Atlantic (28.1,28.15] cstar_tref ~ temp + aou + silicate + phosphate + phosphate_star 1681 0.7012166 3591.1684 10.505609 1982-1990 –> 1991-2014 1.2740214 4794.353
Atlantic (28.1,28.15] cstar_tref ~ sal + aou + nitrate + silicate + phosphate_star 357 1.0044822 1030.3153 6.762019 1991-2014 –> 2015-2019 1.8000075 5045.720
Atlantic (28.1,28.15] cstar_tref ~ sal + aou + phosphate + phosphate_star 357 0.9124974 959.7411 6.058897 1991-2014 –> 2015-2019 1.6479467 4709.158
Atlantic (28.1,28.15] cstar_tref ~ sal + aou + silicate + phosphate + phosphate_star 357 0.9122466 961.5449 6.061880 1991-2014 –> 2015-2019 1.6273571 4618.676
Atlantic (28.1,28.15] cstar_tref ~ temp + aou + phosphate + phosphate_star 357 1.0291394 1045.6303 11.372665 1991-2014 –> 2015-2019 1.8317057 5088.661
Atlantic (28.1,28.15] cstar_tref ~ temp + aou + silicate + phosphate + phosphate_star 357 0.9656260 1002.1473 11.485840 1991-2014 –> 2015-2019 1.6668426 4593.316
Atlantic (28.15,28.2] cstar_tref ~ sal + aou + nitrate + phosphate_star 2895 0.6351539 5599.6429 6.617855 1982-1990 –> 1991-2014 1.1027395 7075.420
Atlantic (28.15,28.2] cstar_tref ~ sal + aou + nitrate + silicate + phosphate_star 2895 0.6237294 5496.5502 7.684933 1982-1990 –> 1991-2014 1.0577785 6808.956
Atlantic (28.15,28.2] cstar_tref ~ temp + aou + nitrate + phosphate_star 2895 0.7005408 6166.9780 11.171208 1982-1990 –> 1991-2014 1.1613097 7610.123
Atlantic (28.15,28.2] cstar_tref ~ temp + aou + nitrate + silicate 2895 0.6899008 6078.3630 11.858579 1982-1990 –> 1991-2014 1.1299717 7419.384
Atlantic (28.15,28.2] cstar_tref ~ temp + aou + nitrate + silicate + phosphate_star 2895 0.6898771 6080.1641 11.900029 1982-1990 –> 1991-2014 1.1246070 7396.052
Atlantic (28.15,28.2] cstar_tref ~ sal + aou + nitrate + phosphate_star 577 0.6751002 1196.0552 2.128076 1991-2014 –> 2015-2019 1.3102541 6795.698
Atlantic (28.15,28.2] cstar_tref ~ sal + aou + nitrate + silicate + phosphate_star 577 0.6367983 1130.6522 1.963683 1991-2014 –> 2015-2019 1.2605277 6627.202
Atlantic (28.15,28.2] cstar_tref ~ temp + aou + nitrate + phosphate_star 577 0.7156504 1263.3688 2.327378 1991-2014 –> 2015-2019 1.4161913 7430.347
Atlantic (28.15,28.2] cstar_tref ~ temp + aou + nitrate + silicate 577 0.6800742 1204.5265 2.284496 1991-2014 –> 2015-2019 1.3699750 7282.889
Atlantic (28.15,28.2] cstar_tref ~ temp + aou + nitrate + silicate + phosphate_star 577 0.6626252 1176.5313 2.352024 1991-2014 –> 2015-2019 1.3525023 7256.695
Atlantic (28.2, Inf] cstar_tref ~ sal + aou + nitrate 4966 0.3540822 3791.2358 3.366024 1982-1990 –> 1991-2014 0.6279599 4265.977
Atlantic (28.2, Inf] cstar_tref ~ sal + aou + nitrate + phosphate_star 4966 0.3454367 3547.7197 2.132448 1982-1990 –> 1991-2014 0.6189923 4020.046
Atlantic (28.2, Inf] cstar_tref ~ sal + aou + nitrate + silicate 4966 0.3510484 3707.7711 2.443183 1982-1990 –> 1991-2014 0.6247137 4181.601
Atlantic (28.2, Inf] cstar_tref ~ sal + aou + nitrate + silicate + phosphate_star 4966 0.3408491 3416.9331 2.868623 1982-1990 –> 1991-2014 0.6085809 3810.520
Atlantic (28.2, Inf] cstar_tref ~ temp + aou + nitrate + silicate + phosphate_star 4966 0.5641655 8421.7457 10.759763 1982-1990 –> 1991-2014 0.9490573 10177.219
Atlantic (28.2, Inf] cstar_tref ~ sal + aou + nitrate 1119 0.4312848 1303.4562 2.458907 1991-2014 –> 2015-2019 0.7853670 5094.692
Atlantic (28.2, Inf] cstar_tref ~ sal + aou + nitrate + phosphate_star 1119 0.4111185 1198.2850 2.439762 1991-2014 –> 2015-2019 0.7565552 4746.005
Atlantic (28.2, Inf] cstar_tref ~ sal + aou + nitrate + silicate 1119 0.4243147 1268.9919 2.481994 1991-2014 –> 2015-2019 0.7753631 4976.763
Atlantic (28.2, Inf] cstar_tref ~ sal + aou + nitrate + silicate + phosphate_star 1119 0.4036559 1159.2877 2.464821 1991-2014 –> 2015-2019 0.7445050 4576.221
Atlantic (28.2, Inf] cstar_tref ~ temp + aou + nitrate + silicate + phosphate_star 1119 0.6622974 2267.4375 3.700595 1991-2014 –> 2015-2019 1.2264629 10689.183
Indo-Pacific (-Inf,26] cstar_tref ~ sal + aou + phosphate + phosphate_star 9682 6.3357720 63238.3686 30.583791 1982-1990 –> 1991-2014 12.8487055 86859.232
Indo-Pacific (-Inf,26] cstar_tref ~ sal + aou + silicate + phosphate + phosphate_star 9682 6.2826960 63077.4692 30.088806 1982-1990 –> 1991-2014 12.7518171 86651.937
Indo-Pacific (-Inf,26] cstar_tref ~ temp + aou + nitrate + silicate + phosphate_star 9682 7.3183138 66032.0431 31.865284 1982-1990 –> 1991-2014 14.8161830 90664.650
Indo-Pacific (-Inf,26] cstar_tref ~ temp + aou + silicate + phosphate + phosphate_star 9682 7.3941920 66231.7804 29.848080 1982-1990 –> 1991-2014 14.9474321 90917.142
Indo-Pacific (-Inf,26] cstar_tref ~ temp + silicate + phosphate + phosphate_star 9682 7.5062285 66520.9823 29.068724 1982-1990 –> 1991-2014 15.1884533 91325.751
Indo-Pacific (-Inf,26] cstar_tref ~ sal + aou + phosphate + phosphate_star 2030 5.8246152 12926.9878 17.898043 1991-2014 –> 2015-2019 12.1603872 76165.356
Indo-Pacific (-Inf,26] cstar_tref ~ sal + aou + silicate + phosphate + phosphate_star 2030 5.7529203 12878.7033 17.937836 1991-2014 –> 2015-2019 12.0356163 75956.173
Indo-Pacific (-Inf,26] cstar_tref ~ temp + aou + nitrate + silicate + phosphate_star 2030 6.8332763 13577.4157 22.857113 1991-2014 –> 2015-2019 14.1515901 79609.459
Indo-Pacific (-Inf,26] cstar_tref ~ temp + aou + silicate + phosphate + phosphate_star 2030 6.8945420 13613.6546 22.139530 1991-2014 –> 2015-2019 14.2887340 79845.435
Indo-Pacific (-Inf,26] cstar_tref ~ temp + silicate + phosphate + phosphate_star 2030 7.0324952 13692.0893 22.299311 1991-2014 –> 2015-2019 14.5387237 80213.072
Indo-Pacific (26,26.5] cstar_tref ~ aou + silicate + phosphate + phosphate_star 10181 4.7623662 60684.3089 42.834511 1982-1990 –> 1991-2014 9.4337794 83621.648
Indo-Pacific (26,26.5] cstar_tref ~ sal + aou + silicate + phosphate + phosphate_star 10181 4.3923698 59039.5168 44.800735 1982-1990 –> 1991-2014 8.6474833 81256.029
Indo-Pacific (26,26.5] cstar_tref ~ temp + aou + nitrate + silicate + phosphate_star 10181 4.5738978 59864.1139 48.951685 1982-1990 –> 1991-2014 9.0229643 82425.798
Indo-Pacific (26,26.5] cstar_tref ~ temp + aou + silicate + phosphate 10181 4.7543070 60649.8219 41.564739 1982-1990 –> 1991-2014 9.3844962 83518.519
Indo-Pacific (26,26.5] cstar_tref ~ temp + aou + silicate + phosphate + phosphate_star 10181 4.7487443 60627.9837 42.175668 1982-1990 –> 1991-2014 9.3775599 83496.383
Indo-Pacific (26,26.5] cstar_tref ~ aou + silicate + phosphate + phosphate_star 2102 4.8234643 12592.1797 38.721833 1991-2014 –> 2015-2019 9.5858305 73276.489
Indo-Pacific (26,26.5] cstar_tref ~ sal + aou + silicate + phosphate + phosphate_star 2102 4.5030555 12305.2126 44.909536 1991-2014 –> 2015-2019 8.8954253 71344.729
Indo-Pacific (26,26.5] cstar_tref ~ temp + aou + nitrate + silicate + phosphate_star 2102 4.6064664 12400.6639 43.468136 1991-2014 –> 2015-2019 9.1803642 72264.778
Indo-Pacific (26,26.5] cstar_tref ~ temp + aou + silicate + phosphate 2102 4.8376270 12604.5054 35.243135 1991-2014 –> 2015-2019 9.5919340 73254.327
Indo-Pacific (26,26.5] cstar_tref ~ temp + aou + silicate + phosphate + phosphate_star 2102 4.8199225 12591.0916 37.796306 1991-2014 –> 2015-2019 9.5686668 73219.075
Indo-Pacific (26.5,26.75] cstar_tref ~ aou + silicate + phosphate + phosphate_star 8419 4.1013445 47667.8063 22.612674 1982-1990 –> 1991-2014 7.8694431 64971.022
Indo-Pacific (26.5,26.75] cstar_tref ~ sal + aou + silicate + phosphate + phosphate_star 8419 3.9675083 47111.1789 20.124177 1982-1990 –> 1991-2014 7.5263664 64056.585
Indo-Pacific (26.5,26.75] cstar_tref ~ temp + aou + nitrate + silicate + phosphate_star 8419 4.1090842 47701.5517 37.670707 1982-1990 –> 1991-2014 7.9029437 65049.678
Indo-Pacific (26.5,26.75] cstar_tref ~ temp + aou + silicate + phosphate + phosphate_star 8419 4.0110840 47295.1050 23.270512 1982-1990 –> 1991-2014 7.7202964 64501.121
Indo-Pacific (26.5,26.75] cstar_tref ~ temp + nitrate + silicate + phosphate_star 8419 4.1128271 47714.8820 37.173326 1982-1990 –> 1991-2014 8.0401191 65278.707
Indo-Pacific (26.5,26.75] cstar_tref ~ aou + silicate + phosphate + phosphate_star 1711 4.4364980 9965.9268 23.642868 1991-2014 –> 2015-2019 8.5378425 57633.733
Indo-Pacific (26.5,26.75] cstar_tref ~ sal + aou + silicate + phosphate + phosphate_star 1711 4.3115843 9870.1948 23.468371 1991-2014 –> 2015-2019 8.2790925 56981.374
Indo-Pacific (26.5,26.75] cstar_tref ~ temp + aou + nitrate + silicate + phosphate_star 1711 4.3533536 9903.1866 30.751376 1991-2014 –> 2015-2019 8.4624378 57604.738
Indo-Pacific (26.5,26.75] cstar_tref ~ temp + aou + silicate + phosphate + phosphate_star 1711 4.3020551 9862.6233 21.657742 1991-2014 –> 2015-2019 8.3131390 57157.728
Indo-Pacific (26.5,26.75] cstar_tref ~ temp + nitrate + silicate + phosphate_star 1711 4.3805774 9922.5195 34.223910 1991-2014 –> 2015-2019 8.4934045 57637.401
Indo-Pacific (26.75,27] cstar_tref ~ aou + silicate + phosphate + phosphate_star 9983 4.4326724 58071.9538 18.312081 1982-1990 –> 1991-2014 8.2225993 78619.547
Indo-Pacific (26.75,27] cstar_tref ~ sal + aou + phosphate + phosphate_star 9983 4.1834150 56916.4261 21.387704 1982-1990 –> 1991-2014 7.6520827 76802.887
Indo-Pacific (26.75,27] cstar_tref ~ sal + aou + silicate + phosphate + phosphate_star 9983 4.1677886 56843.7075 20.495882 1982-1990 –> 1991-2014 7.6241626 76705.667
Indo-Pacific (26.75,27] cstar_tref ~ temp + aou + phosphate + phosphate_star 9983 4.1082617 56554.4846 22.096742 1982-1990 –> 1991-2014 7.5920723 76473.459
Indo-Pacific (26.75,27] cstar_tref ~ temp + aou + silicate + phosphate + phosphate_star 9983 4.0748418 56393.4011 20.483095 1982-1990 –> 1991-2014 7.5366191 76267.020
Indo-Pacific (26.75,27] cstar_tref ~ aou + silicate + phosphate + phosphate_star 2038 4.8846870 12260.5583 17.949083 1991-2014 –> 2015-2019 9.3173594 70332.512
Indo-Pacific (26.75,27] cstar_tref ~ sal + aou + phosphate + phosphate_star 2038 4.6621122 12070.4675 19.567208 1991-2014 –> 2015-2019 8.8455271 68986.894
Indo-Pacific (26.75,27] cstar_tref ~ sal + aou + silicate + phosphate + phosphate_star 2038 4.6496425 12061.5509 18.753486 1991-2014 –> 2015-2019 8.8174311 68905.258
Indo-Pacific (26.75,27] cstar_tref ~ temp + aou + phosphate + phosphate_star 2038 4.5822019 11999.9977 16.144415 1991-2014 –> 2015-2019 8.6904636 68554.482
Indo-Pacific (26.75,27] cstar_tref ~ temp + aou + silicate + phosphate + phosphate_star 2038 4.5578519 11980.2800 17.365499 1991-2014 –> 2015-2019 8.6326938 68373.681
Indo-Pacific (27,27.25] cstar_tref ~ aou + silicate + phosphate + phosphate_star 11834 4.3374785 68323.3324 35.609176 1982-1990 –> 1991-2014 7.6043485 91484.376
Indo-Pacific (27,27.25] cstar_tref ~ sal + aou + silicate + phosphate + phosphate_star 11834 4.2839531 68031.4470 38.131627 1982-1990 –> 1991-2014 7.4422106 90893.768
Indo-Pacific (27,27.25] cstar_tref ~ temp + aou + nitrate + silicate + phosphate_star 11834 4.1109470 67055.7860 43.672039 1982-1990 –> 1991-2014 7.0077363 89149.510
Indo-Pacific (27,27.25] cstar_tref ~ temp + aou + phosphate + phosphate_star 11834 4.2917010 68072.2139 42.731701 1982-1990 –> 1991-2014 7.4957610 91060.594
Indo-Pacific (27,27.25] cstar_tref ~ temp + aou + silicate + phosphate + phosphate_star 11834 3.8409175 65447.7318 28.428207 1982-1990 –> 1991-2014 6.8453114 87865.846
Indo-Pacific (27,27.25] cstar_tref ~ aou + silicate + phosphate + phosphate_star 2492 5.1797276 15281.4360 34.389108 1991-2014 –> 2015-2019 9.5172061 83604.768
Indo-Pacific (27,27.25] cstar_tref ~ sal + aou + silicate + phosphate + phosphate_star 2492 5.1268059 15232.2521 36.702709 1991-2014 –> 2015-2019 9.4107590 83263.699
Indo-Pacific (27,27.25] cstar_tref ~ temp + aou + nitrate + silicate + phosphate_star 2492 4.9812685 15088.7216 41.007621 1991-2014 –> 2015-2019 9.0922154 82144.508
Indo-Pacific (27,27.25] cstar_tref ~ temp + aou + phosphate + phosphate_star 2492 5.1671995 15269.3666 42.648953 1991-2014 –> 2015-2019 9.4589004 83341.581
Indo-Pacific (27,27.25] cstar_tref ~ temp + aou + silicate + phosphate + phosphate_star 2492 4.5560825 14644.0420 27.382998 1991-2014 –> 2015-2019 8.3970000 80091.774
Indo-Pacific (27.25,27.5] cstar_tref ~ sal + aou + nitrate + silicate + phosphate_star 10730 3.3485267 56399.2697 32.223299 1982-1990 –> 1991-2014 6.0432043 75251.527
Indo-Pacific (27.25,27.5] cstar_tref ~ sal + aou + silicate + phosphate + phosphate_star 10730 3.5816330 57843.4934 32.193147 1982-1990 –> 1991-2014 6.3895220 77017.413
Indo-Pacific (27.25,27.5] cstar_tref ~ sal + aou + silicate + phosphate_star 10730 3.5975737 57936.7928 31.699283 1982-1990 –> 1991-2014 6.4084439 77117.006
Indo-Pacific (27.25,27.5] cstar_tref ~ temp + aou + nitrate + silicate + phosphate_star 10730 3.5579309 57701.0058 33.237855 1982-1990 –> 1991-2014 6.3849210 76927.915
Indo-Pacific (27.25,27.5] cstar_tref ~ temp + aou + silicate + phosphate + phosphate_star 10730 3.3214847 56225.2596 33.410846 1982-1990 –> 1991-2014 5.9786969 74968.084
Indo-Pacific (27.25,27.5] cstar_tref ~ sal + aou + nitrate + silicate + phosphate_star 2228 4.0580440 12578.3141 31.954794 1991-2014 –> 2015-2019 7.4065706 68977.584
Indo-Pacific (27.25,27.5] cstar_tref ~ sal + aou + silicate + phosphate + phosphate_star 2228 4.3731039 12911.4980 32.992534 1991-2014 –> 2015-2019 7.9547370 70754.991
Indo-Pacific (27.25,27.5] cstar_tref ~ sal + aou + silicate + phosphate_star 2228 4.4198370 12956.8643 31.533857 1991-2014 –> 2015-2019 8.0174107 70893.657
Indo-Pacific (27.25,27.5] cstar_tref ~ temp + aou + nitrate + silicate + phosphate_star 2228 4.3082666 12844.9370 32.622370 1991-2014 –> 2015-2019 7.8661975 70545.943
Indo-Pacific (27.25,27.5] cstar_tref ~ temp + aou + silicate + phosphate + phosphate_star 2228 3.8900060 12389.8682 34.380147 1991-2014 –> 2015-2019 7.2114907 68615.128
Indo-Pacific (27.5,27.75] cstar_tref ~ sal + aou + nitrate + silicate + phosphate_star 10806 3.0537537 54807.1218 30.553558 1982-1990 –> 1991-2014 5.0847796 71806.919
Indo-Pacific (27.5,27.75] cstar_tref ~ sal + aou + silicate + phosphate + phosphate_star 10806 3.0522422 54796.4217 32.203765 1982-1990 –> 1991-2014 5.1024941 71871.441
Indo-Pacific (27.5,27.75] cstar_tref ~ sal + aou + silicate + phosphate_star 10806 3.1555075 55513.5148 29.651791 1982-1990 –> 1991-2014 5.2135179 72616.690
Indo-Pacific (27.5,27.75] cstar_tref ~ sal + nitrate + silicate + phosphate_star 10806 3.1598324 55543.1161 30.027069 1982-1990 –> 1991-2014 5.2677058 72837.427
Indo-Pacific (27.5,27.75] cstar_tref ~ sal + silicate + phosphate + phosphate_star 10806 3.1983702 55805.1051 29.029922 1982-1990 –> 1991-2014 5.2676435 72951.855
Indo-Pacific (27.5,27.75] cstar_tref ~ sal + aou + nitrate + silicate + phosphate_star 2247 3.9976483 12618.0737 24.999766 1991-2014 –> 2015-2019 7.0514021 67425.196
Indo-Pacific (27.5,27.75] cstar_tref ~ sal + aou + silicate + phosphate + phosphate_star 2247 3.8351836 12431.6223 10.833538 1991-2014 –> 2015-2019 6.8874258 67228.044
Indo-Pacific (27.5,27.75] cstar_tref ~ sal + aou + silicate + phosphate_star 2247 4.1595818 12794.5228 23.535439 1991-2014 –> 2015-2019 7.3150893 68308.038
Indo-Pacific (27.5,27.75] cstar_tref ~ sal + nitrate + silicate + phosphate_star 2247 4.2544544 12895.8713 32.118875 1991-2014 –> 2015-2019 7.4142868 68438.987
Indo-Pacific (27.5,27.75] cstar_tref ~ temp + aou + silicate + phosphate + phosphate_star 2247 4.0489791 12675.4105 19.554817 1991-2014 –> 2015-2019 7.2553457 68536.481
Indo-Pacific (27.75,27.85] cstar_tref ~ aou + silicate + phosphate + phosphate_star 4260 2.6051555 20259.1913 24.652727 1982-1990 –> 1991-2014 4.2583900 26151.508
Indo-Pacific (27.75,27.85] cstar_tref ~ sal + aou + silicate + phosphate + phosphate_star 4260 2.6036022 20256.1097 24.952806 1982-1990 –> 1991-2014 4.2356334 26110.927
Indo-Pacific (27.75,27.85] cstar_tref ~ temp + aou + nitrate + silicate + phosphate_star 4260 2.6047039 20259.7143 25.247303 1982-1990 –> 1991-2014 4.2639326 26165.106
Indo-Pacific (27.75,27.85] cstar_tref ~ temp + aou + silicate + phosphate 4260 2.6179623 20300.9726 24.216157 1982-1990 –> 1991-2014 4.2821454 26213.488
Indo-Pacific (27.75,27.85] cstar_tref ~ temp + aou + silicate + phosphate + phosphate_star 4260 2.5354031 20029.9609 24.814201 1982-1990 –> 1991-2014 4.1776173 25903.812
Indo-Pacific (27.75,27.85] cstar_tref ~ sal + aou + nitrate + silicate + phosphate_star 922 3.0579229 4691.6276 36.382754 1991-2014 –> 2015-2019 5.6740088 24988.492
Indo-Pacific (27.75,27.85] cstar_tref ~ sal + aou + silicate + phosphate + phosphate_star 922 3.1055539 4720.1289 35.090044 1991-2014 –> 2015-2019 5.7091561 24976.239
Indo-Pacific (27.75,27.85] cstar_tref ~ temp + aou + nitrate + silicate + phosphate_star 922 3.1449104 4743.3509 33.954853 1991-2014 –> 2015-2019 5.7496143 25003.065
Indo-Pacific (27.75,27.85] cstar_tref ~ temp + aou + phosphate + phosphate_star 922 3.0725864 4698.4489 34.402860 1991-2014 –> 2015-2019 5.6863827 24985.853
Indo-Pacific (27.75,27.85] cstar_tref ~ temp + aou + silicate + phosphate + phosphate_star 922 3.0364046 4678.6058 31.402096 1991-2014 –> 2015-2019 5.5718078 24708.567
Indo-Pacific (27.85,27.95] cstar_tref ~ temp + aou + nitrate + phosphate_star 5309 2.5668371 25087.6067 30.182329 1982-1990 –> 1991-2014 4.6284820 33896.476
Indo-Pacific (27.85,27.95] cstar_tref ~ temp + aou + nitrate + silicate + phosphate_star 5309 2.5654989 25084.0697 29.989493 1982-1990 –> 1991-2014 4.6254104 33891.486
Indo-Pacific (27.85,27.95] cstar_tref ~ temp + aou + silicate + phosphate + phosphate_star 5309 2.5807858 25147.1508 35.369284 1982-1990 –> 1991-2014 4.6922237 34056.010
Indo-Pacific (27.85,27.95] cstar_tref ~ temp + nitrate + phosphate_star 5309 2.5722729 25108.0686 32.003273 1982-1990 –> 1991-2014 4.6429213 33932.831
Indo-Pacific (27.85,27.95] cstar_tref ~ temp + nitrate + silicate + phosphate_star 5309 2.5702526 25101.7257 31.637318 1982-1990 –> 1991-2014 4.6396366 33925.980
Indo-Pacific (27.85,27.95] cstar_tref ~ temp + aou + nitrate + phosphate_star 1097 3.4259098 5826.7705 31.197717 1991-2014 –> 2015-2019 5.9927469 30914.377
Indo-Pacific (27.85,27.95] cstar_tref ~ temp + aou + nitrate + silicate 1097 3.4213687 5823.8604 30.819141 1991-2014 –> 2015-2019 5.9938100 30934.624
Indo-Pacific (27.85,27.95] cstar_tref ~ temp + aou + nitrate + silicate + phosphate_star 1097 3.4058252 5815.8702 30.764342 1991-2014 –> 2015-2019 5.9713241 30899.940
Indo-Pacific (27.85,27.95] cstar_tref ~ temp + nitrate + phosphate_star 1097 3.4339878 5829.9377 33.280103 1991-2014 –> 2015-2019 6.0062607 30938.006
Indo-Pacific (27.85,27.95] cstar_tref ~ temp + nitrate + silicate + phosphate_star 1097 3.4091222 5815.9931 32.021227 1991-2014 –> 2015-2019 5.9793748 30917.719
Indo-Pacific (27.95,28.05] cstar_tref ~ aou + silicate + phosphate + phosphate_star 4586 2.1812140 20179.5782 8.166104 1982-1990 –> 1991-2014 4.0282687 27476.169
Indo-Pacific (27.95,28.05] cstar_tref ~ sal + aou + nitrate + silicate + phosphate_star 4586 2.1379896 19997.9948 8.949083 1982-1990 –> 1991-2014 4.0658894 27450.120
Indo-Pacific (27.95,28.05] cstar_tref ~ sal + aou + silicate + phosphate + phosphate_star 4586 2.1340646 19981.1408 8.674285 1982-1990 –> 1991-2014 3.9532668 27225.275
Indo-Pacific (27.95,28.05] cstar_tref ~ temp + aou + nitrate + silicate + phosphate_star 4586 2.1895679 20216.6395 8.037144 1982-1990 –> 1991-2014 4.0437604 27529.053
Indo-Pacific (27.95,28.05] cstar_tref ~ temp + aou + silicate + phosphate + phosphate_star 4586 2.1061976 19860.5825 7.765903 1982-1990 –> 1991-2014 3.9226533 27099.302
Indo-Pacific (27.95,28.05] cstar_tref ~ sal + aou + nitrate + phosphate_star 986 2.4382660 4567.7650 8.209457 1991-2014 –> 2015-2019 4.6027272 24676.626
Indo-Pacific (27.95,28.05] cstar_tref ~ sal + aou + nitrate + silicate + phosphate_star 986 2.4323280 4564.9567 8.377699 1991-2014 –> 2015-2019 4.5703176 24562.951
Indo-Pacific (27.95,28.05] cstar_tref ~ sal + aou + silicate + phosphate + phosphate_star 986 2.5002629 4619.2795 8.378546 1991-2014 –> 2015-2019 4.6343275 24600.420
Indo-Pacific (27.95,28.05] cstar_tref ~ temp + aou + phosphate + phosphate_star 986 2.4894027 4608.6952 8.844160 1991-2014 –> 2015-2019 4.6714034 24791.581
Indo-Pacific (27.95,28.05] cstar_tref ~ temp + aou + silicate + phosphate + phosphate_star 986 2.4497862 4579.0603 8.657077 1991-2014 –> 2015-2019 4.5559838 24439.643
Indo-Pacific (28.05,28.1] cstar_tref ~ sal + aou + silicate + phosphate 3263 1.8690111 13353.4151 8.710475 1982-1990 –> 1991-2014 3.3994600 18153.736
Indo-Pacific (28.05,28.1] cstar_tref ~ sal + aou + silicate + phosphate + phosphate_star 3263 1.8089790 13142.3616 8.857639 1982-1990 –> 1991-2014 3.3135675 17900.442
Indo-Pacific (28.05,28.1] cstar_tref ~ sal + silicate + phosphate + phosphate_star 3263 1.8748441 13373.7505 8.849840 1982-1990 –> 1991-2014 3.4383664 18229.574
Indo-Pacific (28.05,28.1] cstar_tref ~ temp + aou + nitrate + silicate + phosphate_star 3263 1.8307351 13220.3799 9.821157 1982-1990 –> 1991-2014 3.3458588 17996.575
Indo-Pacific (28.05,28.1] cstar_tref ~ temp + aou + silicate + phosphate + phosphate_star 3263 1.8002711 13110.8713 8.504391 1982-1990 –> 1991-2014 3.3260671 17905.288
Indo-Pacific (28.05,28.1] cstar_tref ~ aou + silicate + phosphate + phosphate_star 677 2.0488347 2904.4280 8.825797 1991-2014 –> 2015-2019 3.9256783 16285.135
Indo-Pacific (28.05,28.1] cstar_tref ~ sal + aou + nitrate + silicate + phosphate_star 677 2.0489747 2906.5205 9.016007 1991-2014 –> 2015-2019 3.9243558 16284.140
Indo-Pacific (28.05,28.1] cstar_tref ~ sal + aou + silicate + phosphate + phosphate_star 677 1.9929778 2869.0017 8.610574 1991-2014 –> 2015-2019 3.8019569 16011.363
Indo-Pacific (28.05,28.1] cstar_tref ~ temp + aou + nitrate + silicate + phosphate_star 677 2.0391799 2900.0324 8.467085 1991-2014 –> 2015-2019 3.8699150 16120.412
Indo-Pacific (28.05,28.1] cstar_tref ~ temp + aou + silicate + phosphate + phosphate_star 677 1.9232619 2820.7895 6.757174 1991-2014 –> 2015-2019 3.7235330 15931.661
Indo-Pacific (28.1, Inf] cstar_tref ~ sal + aou + silicate + phosphate 27122 1.4027036 95337.1527 13.674494 1982-1990 –> 1991-2014 2.6288396 128094.139
Indo-Pacific (28.1, Inf] cstar_tref ~ sal + aou + silicate + phosphate + phosphate_star 27122 1.3045930 91405.9010 16.121120 1982-1990 –> 1991-2014 2.4237594 122322.965
Indo-Pacific (28.1, Inf] cstar_tref ~ temp + aou + nitrate + silicate + phosphate_star 27122 1.3229805 92165.0990 13.015308 1982-1990 –> 1991-2014 2.3788879 121908.134
Indo-Pacific (28.1, Inf] cstar_tref ~ temp + aou + silicate + phosphate + phosphate_star 27122 1.3659606 93899.3208 16.927242 1982-1990 –> 1991-2014 2.5534529 126012.126
Indo-Pacific (28.1, Inf] cstar_tref ~ temp + nitrate + silicate + phosphate_star 27122 1.5219023 99761.2715 17.446244 1982-1990 –> 1991-2014 2.7775521 132998.198
Indo-Pacific (28.1, Inf] cstar_tref ~ sal + aou + nitrate + silicate + phosphate_star 5555 1.6233951 21161.4208 9.689660 1991-2014 –> 2015-2019 3.1230324 120125.255
Indo-Pacific (28.1, Inf] cstar_tref ~ sal + aou + silicate + phosphate 5555 1.5730131 20809.1588 10.335174 1991-2014 –> 2015-2019 2.9757167 116146.312
Indo-Pacific (28.1, Inf] cstar_tref ~ sal + aou + silicate + phosphate + phosphate_star 5555 1.5004212 20286.2438 12.496018 1991-2014 –> 2015-2019 2.8050143 111692.145
Indo-Pacific (28.1, Inf] cstar_tref ~ temp + aou + nitrate + silicate + phosphate_star 5555 1.5822876 20876.4711 10.782557 1991-2014 –> 2015-2019 2.9052681 113041.570
Indo-Pacific (28.1, Inf] cstar_tref ~ temp + aou + silicate + phosphate + phosphate_star 5555 1.5619408 20732.6801 13.601766 1991-2014 –> 2015-2019 2.9279014 114632.001

5.3.2 per fitting unit

lm_best %>%
  group_by(basin, gamma_slab, eras) %>% 
  summarise(rmse_sum_mean = mean(rmse_sum),
            ais_sum_mean = mean(aic_sum)) %>% 
  ungroup() %>% 
  kable() %>%
  add_header_above() %>%
  kable_styling() %>%
  scroll_box(width = "100%", height = "400px")
basin gamma_slab eras rmse_sum_mean ais_sum_mean
Atlantic (-Inf,26] 1982-1990 –> 1991-2014 2.4659147 1318.671
Atlantic (-Inf,26] 1991-2014 –> 2015-2019 2.8401256 1160.549
Atlantic (26,26.5] 1982-1990 –> 1991-2014 7.7971914 15364.349
Atlantic (26,26.5] 1991-2014 –> 2015-2019 8.0043213 13244.290
Atlantic (26.5,26.75] 1982-1990 –> 1991-2014 6.2005510 17995.699
Atlantic (26.5,26.75] 1991-2014 –> 2015-2019 6.7061180 15778.833
Atlantic (26.75,27] 1982-1990 –> 1991-2014 3.5697418 24184.681
Atlantic (26.75,27] 1991-2014 –> 2015-2019 4.4952471 22659.297
Atlantic (27,27.25] 1982-1990 –> 1991-2014 3.7817719 20753.585
Atlantic (27,27.25] 1991-2014 –> 2015-2019 4.3709914 19459.594
Atlantic (27.25,27.5] 1982-1990 –> 1991-2014 4.4806618 23272.701
Atlantic (27.25,27.5] 1991-2014 –> 2015-2019 5.4019952 21242.724
Atlantic (27.5,27.75] 1982-1990 –> 1991-2014 4.8107833 32675.369
Atlantic (27.5,27.75] 1991-2014 –> 2015-2019 5.8476580 30142.661
Atlantic (27.75,27.85] 1982-1990 –> 1991-2014 3.6949641 10083.110
Atlantic (27.75,27.85] 1991-2014 –> 2015-2019 3.7782482 8912.722
Atlantic (27.85,27.95] 1982-1990 –> 1991-2014 6.0885898 12721.837
Atlantic (27.85,27.95] 1991-2014 –> 2015-2019 6.5584434 11751.133
Atlantic (27.95,28.05] 1982-1990 –> 1991-2014 8.7838484 17906.769
Atlantic (27.95,28.05] 1991-2014 –> 2015-2019 8.1848772 15497.874
Atlantic (28.05,28.1] 1982-1990 –> 1991-2014 1.8887609 5586.714
Atlantic (28.05,28.1] 1991-2014 –> 2015-2019 2.1902745 5217.093
Atlantic (28.1,28.15] 1982-1990 –> 1991-2014 1.3735695 5128.353
Atlantic (28.1,28.15] 1991-2014 –> 2015-2019 1.7147719 4811.106
Atlantic (28.15,28.2] 1982-1990 –> 1991-2014 1.1152813 7261.987
Atlantic (28.15,28.2] 1991-2014 –> 2015-2019 1.3418901 7078.566
Atlantic (28.2, Inf] 1982-1990 –> 1991-2014 0.6858608 5291.073
Atlantic (28.2, Inf] 1991-2014 –> 2015-2019 0.8576507 6016.573
Indo-Pacific (-Inf,26] 1982-1990 –> 1991-2014 14.1105182 89283.742
Indo-Pacific (-Inf,26] 1991-2014 –> 2015-2019 13.4350103 78357.899
Indo-Pacific (26,26.5] 1982-1990 –> 1991-2014 9.1732566 82863.675
Indo-Pacific (26,26.5] 1991-2014 –> 2015-2019 9.3644442 72671.880
Indo-Pacific (26.5,26.75] 1982-1990 –> 1991-2014 7.8118337 64771.423
Indo-Pacific (26.5,26.75] 1991-2014 –> 2015-2019 8.4171833 57402.995
Indo-Pacific (26.75,27] 1982-1990 –> 1991-2014 7.7255072 76973.716
Indo-Pacific (26.75,27] 1991-2014 –> 2015-2019 8.8606950 69030.566
Indo-Pacific (27,27.25] 1982-1990 –> 1991-2014 7.2790736 90090.819
Indo-Pacific (27,27.25] 1991-2014 –> 2015-2019 9.1752162 82489.266
Indo-Pacific (27.25,27.5] 1982-1990 –> 1991-2014 6.2409576 76256.389
Indo-Pacific (27.25,27.5] 1991-2014 –> 2015-2019 7.6912813 69957.461
Indo-Pacific (27.5,27.75] 1982-1990 –> 1991-2014 5.1872282 72416.866
Indo-Pacific (27.5,27.75] 1991-2014 –> 2015-2019 7.1847099 67987.349
Indo-Pacific (27.75,27.85] 1982-1990 –> 1991-2014 4.2435437 26108.968
Indo-Pacific (27.75,27.85] 1991-2014 –> 2015-2019 5.6781939 24932.443
Indo-Pacific (27.85,27.95] 1982-1990 –> 1991-2014 4.6457348 33940.557
Indo-Pacific (27.85,27.95] 1991-2014 –> 2015-2019 5.9887033 30920.933
Indo-Pacific (27.95,28.05] 1982-1990 –> 1991-2014 4.0027677 27355.984
Indo-Pacific (27.95,28.05] 1991-2014 –> 2015-2019 4.6069519 24614.244
Indo-Pacific (28.05,28.1] 1982-1990 –> 1991-2014 3.3646639 18037.123
Indo-Pacific (28.05,28.1] 1991-2014 –> 2015-2019 3.8490878 16126.542
Indo-Pacific (28.1, Inf] 1982-1990 –> 1991-2014 2.5524984 126267.112
Indo-Pacific (28.1, Inf] 1991-2014 –> 2015-2019 2.9473866 115127.456

5.4 Target variable coefficients

A data frame to map the target variable is prepared.

# create table with two era belonging to one eras
eras_forward <- lm_all_fitted_wide %>%
  arrange(era) %>% 
  group_by(basin, gamma_slab, model) %>% 
  mutate(eras = paste(era, lead(era), sep = " --> ")) %>% 
  ungroup() %>% 
  select(era, eras) %>% 
  unique()

eras_backward <- lm_all_fitted_wide %>%
  arrange(era) %>% 
  group_by(basin, gamma_slab, model) %>% 
  mutate(eras = paste(lag(era), era, sep = " --> ")) %>% 
  ungroup() %>% 
  select(era, eras) %>% 
  unique()

eras_era <- full_join(eras_backward, eras_forward) %>% 
  filter(str_detect(eras, "NA") == FALSE)

# extend best model selection from eras to era
lm_best_target <- full_join(
  lm_best %>% select(basin, gamma_slab, model, eras),
  eras_era)

lm_best_target <- left_join(lm_best_target, lm_all_fitted_wide)

rm(eras_era, eras_forward, eras_backward,
   lm_all_fitted)

5.5 Plot selected model residuals

# plot model diagnostics, if activated
if (params_local$plot_all_figures == "y") {
  # mutate predictors column
  lm_best_plot <- lm_best_target %>%
    select(basin, gamma_slab, model, eras, era) %>%
    mutate(
      predictors = str_remove(model, paste(params_local$MLR_target, "~ ")),
      predictors = str_replace_all(predictors, "\\+ ", "")
    )
  
  # loop across all basins, era, gamma slabs, and MLRs
  # fit all MLR models
  for (i_basin in unique(GLODAP$basin)) {
    for (i_era in unique(GLODAP$era)) {
      #i_basin <- unique(GLODAP$basin)[1]
      #i_era   <- unique(GLODAP$era)[2]
      print(i_basin)
      print(i_era)
      
      GLODAP_basin_era <- GLODAP %>%
        filter(basin == i_basin, era == i_era)
      
      for (i_gamma_slab in unique(GLODAP_basin_era$gamma_slab)) {
        #i_gamma_slab <- unique(GLODAP_basin_era$gamma_slab)[1]
        print(i_gamma_slab)
        
        GLODAP_basin_era_slab <- GLODAP_basin_era %>%
          filter(gamma_slab == i_gamma_slab)
        
        lm_best_basin_era_slab <- lm_best_plot %>%
          filter(basin == i_basin, era == i_era, gamma_slab == i_gamma_slab)
        
        for (i_eras in unique(lm_best_basin_era_slab$eras)) {
          #i_eras <- unique(lm_best_basin_era_slab$eras)[1]
          print(i_eras)
          
          lm_best_basin_era_slab_eras <- lm_best_basin_era_slab %>%
            filter(eras == i_eras)
          
          for (i_predictors in unique(lm_best_basin_era_slab_eras$predictors)) {
            #i_predictors <- unique(lm_best_basin_era_slab$predictors)[1]
            print(i_predictors)
            # extract one model definition
            i_lm <- lm_all %>%
              filter(predictors == i_predictors) %>%
              select(lm_coeff) %>%
              pull()
            
             # fit model
          if (params_local$MLR_type == "rlm") {
            i_lm_fit <- MASS::rlm(as.formula(i_lm),
                                  data = GLODAP_basin_era_slab)
          }
          
          if (params_local$MLR_type == "lm") {
            i_lm_fit <- lm(as.formula(i_lm),
                           data = GLODAP_basin_era_slab)
          }
            
            # plot model diagnostics vs predictors
            
            p_model_predictors <- ggnostic(
              i_lm_fit,
              columnsY = c(params_local$MLR_target, ".fitted", ".resid"),
              title = paste(
                "era:",
                i_era,
                "| eras:",
                i_eras,
                "| basin:",
                i_basin,
                "| gamma slab:",
                i_gamma_slab,
                "| predictors:",
                i_predictors
              )
            )
            
            ggsave(
              plot = p_model_predictors,
              path = paste(path_version_figures, "eMLR_diagnostics/", sep = ""),
              filename = paste(
                "MLR_residuals",
                i_era,
                i_eras,
                i_basin,
                i_gamma_slab,
                i_predictors,
                "predictors.png",
                sep = "_"
              ),
              width = 14,
              height = 8
            )

            rm(p_model_predictors)
            
            
            # plot model diagnostics vs location
            
            GLODAP_basin_era_slab <- GLODAP_basin_era_slab %>%
              mutate(fitted = i_lm_fit$fitted.values,
                     residuals = i_lm_fit$residuals)
            
            GLODAP_basin_era_slab_long <- GLODAP_basin_era_slab %>% 
              pivot_longer(cols = c(params_local$MLR_target , fitted, residuals),
                           names_to = "estimate",
                           values_to = "value"
              ) %>% 
              pivot_longer(cols = c(lat, lon, depth),
                           names_to = "coordinate_type",
                           values_to = "coordinate_value"
              )

             p_model_coordinate <- GLODAP_basin_era_slab_long %>%
              ggplot(aes(coordinate_value, value)) +
              geom_bin2d() +
              scale_fill_viridis_c() +
              labs(
                title = paste(
                  "era:",
                  i_era,
                  "| eras:",
                  i_eras,
                  "| basin:",
                  i_basin,
                  "| gamma slab:",
                  i_gamma_slab,
                  "| predictors:",
                  i_predictors
                )
              ) +
              facet_grid(estimate~coordinate_type,
                         scales = "free")

            ggsave(
              plot = p_model_coordinate,
              path = paste(path_version_figures, "eMLR_diagnostics", sep = ""),
              filename = paste(
                "Location_MLR_residuals",
                i_era,
                i_eras,
                i_basin,
                i_gamma_slab,
                i_predictors,
                "predictors.png",
                sep = "_"
              ),
              width = 14,
              height = 8
            )

            rm(p_model_coordinate)
            
          }
          
        }
        
      }
    }
  }
  
  rm(
    lm_best_plot,
    lm_best_basin_era_slab,
    i_rmse,
    GLODAP_basin_era,
    GLODAP_basin_era_slab,
    i_lm,
    lm_all_fitted,
    i_basin,
    i_era,
    i_gamma_slab,
    i_predictors,
    lm_all,
    i_aic,
    i_n_predictors,
    i_resid_max
  )
  
}

Individual residual plots of the MLR models for each basin, era, eras and neutral density (gamma) slab are available at:

/nfs/kryo/work/jenmueller/emlr_cant/model/v_XXX/figures/eMLR_diagnostics/

5.6 Cant coeffcients

A data frame of coefficient offsets is prepared to facilitate the direct mapping of Cant.

# pivot long format
lm_best_long <- lm_best_target %>%
  pivot_longer(cols = starts_with("coeff_"),
               names_to = "term",
               values_to = "estimate",
               names_prefix = "coeff_")

# subtract coefficients of adjacent era  
lm_best_long <- lm_best_long %>%
  arrange(era) %>%
  group_by(basin, gamma_slab, eras, model, term) %>%
  mutate(delta_coeff = estimate - lag(estimate)) %>%
  ungroup() %>%
  arrange(basin, gamma_slab, model, term, eras) %>%
  drop_na() %>%
  select(-c(era,estimate))

# pivot back to wide format
lm_best_cant <- lm_best_long %>%
  pivot_wider(values_from = delta_coeff,
              names_from = term,
              names_prefix = "delta_coeff_",
              values_fill = 0)

5.7 Write files

lm_best_target %>%
  select(
    basin,
    gamma_slab,
    model,
    eras,
    era,
    starts_with("coeff_")
  ) %>%
  write_csv(paste(path_version_data,
                  "lm_best_target.csv",
                  sep = ""))

lm_best_cant %>%
  select(
    basin,
    gamma_slab,
    model,
    eras,
    starts_with("delta_coeff_")
  ) %>%
  write_csv(paste(path_version_data,
                  "lm_best_cant.csv",
                  sep = ""))

6 Model diagnotics

6.1 Selection criterion vs predictors

The selection criterion (aic) was plotted against the number of predictors (limited to 3 - 9).

6.1.1 All models

lm_all_fitted_wide %>%
  ggplot(aes(as.factor(n_predictors),
             !!sym(params_local$MLR_criterion),
             col = basin)) +
  geom_hline(yintercept = 10) +
  geom_boxplot() +
  facet_grid(gamma_slab~era) +
  scale_color_brewer(palette = "Set1") +
  labs(x="Number of predictors")

Version Author Date
c7892c1 Donghe-Zhu 2021-03-04
924430b Donghe-Zhu 2021-03-03
0d0bca1 Donghe-Zhu 2021-03-03
cb63c16 Donghe-Zhu 2021-03-03
ffda45a Donghe-Zhu 2021-03-03
691ba81 Donghe-Zhu 2021-03-03
c5e45a2 Donghe-Zhu 2021-03-03
89c3e58 Donghe-Zhu 2021-03-03
c911669 Donghe-Zhu 2021-03-03
b71c719 Donghe-Zhu 2021-03-01
13666ca Donghe-Zhu 2021-03-01
c6e60fe Donghe-Zhu 2021-03-01
7a388f7 Donghe-Zhu 2021-03-01
799e913 Donghe-Zhu 2021-03-01
66ff99f Donghe-Zhu 2021-03-01
ac9bb7a Donghe-Zhu 2021-02-28
efdc047 Donghe-Zhu 2021-02-28
e9a7418 Donghe-Zhu 2021-02-28
e152917 Donghe-Zhu 2021-02-28
287123c Donghe-Zhu 2021-02-27
54d5b5b Donghe-Zhu 2021-02-27
330f064 Donghe-Zhu 2021-02-27
adbc9bc Donghe-Zhu 2021-02-27
5937141 Donghe-Zhu 2021-02-27
4414bbf Donghe-Zhu 2021-02-27
a265efb Donghe-Zhu 2021-02-27
19edd1e Donghe-Zhu 2021-02-27
f20483f Donghe-Zhu 2021-02-26
6a2c7b3 Donghe-Zhu 2021-02-25
02b976d Donghe-Zhu 2021-02-24
354c224 Donghe-Zhu 2021-02-24
1a0a88a Donghe-Zhu 2021-02-24
57f701e Donghe-Zhu 2021-02-24
06f3149 Donghe-Zhu 2021-02-16
401eab3 Donghe-Zhu 2021-02-15
e3bba84 Donghe-Zhu 2021-02-15
5dce4b1 Donghe-Zhu 2021-02-15
4469a0c Donghe-Zhu 2021-02-13
5ae6a69 Donghe-Zhu 2021-02-10
05385dc Donghe-Zhu 2021-02-10
f791ae4 Donghe-Zhu 2021-02-09
f71ae34 Donghe-Zhu 2021-02-09
c011832 Donghe-Zhu 2021-02-09
a145fa7 Donghe-Zhu 2021-02-09
c344e42 Donghe-Zhu 2021-02-08
2f095d7 Donghe-Zhu 2021-02-07
1fad5f1 Donghe-Zhu 2021-02-07
ca03c39 Donghe-Zhu 2021-02-07
cd7c52c Donghe-Zhu 2021-02-04
bcf84f4 Donghe-Zhu 2021-02-02
a518739 Donghe-Zhu 2021-02-01
61666de Donghe-Zhu 2021-01-31
865b582 Donghe-Zhu 2021-01-31
3e68089 Donghe-Zhu 2021-01-31
ecf335c Donghe-Zhu 2021-01-31
a618965 Donghe-Zhu 2021-01-31
59e006e Donghe-Zhu 2021-01-31
a1c8f87 Donghe-Zhu 2021-01-31
ae5c18f Donghe-Zhu 2021-01-31
b50fe52 Donghe-Zhu 2021-01-31
ac99ae5 jens-daniel-mueller 2021-01-29
b5bdcaf Donghe-Zhu 2021-01-29
442010d Donghe-Zhu 2021-01-29
372adf5 Donghe-Zhu 2021-01-29
af8788e Donghe-Zhu 2021-01-29
21c91c9 Donghe-Zhu 2021-01-29
eded038 Donghe-Zhu 2021-01-29
541d4dd Donghe-Zhu 2021-01-29
6a75576 Donghe-Zhu 2021-01-28
16fba40 Donghe-Zhu 2021-01-28
12bc567 Donghe-Zhu 2021-01-27
ceed31b Donghe-Zhu 2021-01-27
342402d Donghe-Zhu 2021-01-27
5bad5c2 Donghe-Zhu 2021-01-27
61efb56 Donghe-Zhu 2021-01-25
48f638e Donghe-Zhu 2021-01-25
c1cec47 Donghe-Zhu 2021-01-25
05ffb0c Donghe-Zhu 2021-01-25
8b97165 Donghe-Zhu 2021-01-25
c569946 Donghe-Zhu 2021-01-24
a2f0d56 Donghe-Zhu 2021-01-23
28509fc Donghe-Zhu 2021-01-23
4c28e4a Donghe-Zhu 2021-01-22
24cc264 jens-daniel-mueller 2021-01-22
7891955 Donghe-Zhu 2021-01-21
d4cf1cb Donghe-Zhu 2021-01-21
1f3e5b6 jens-daniel-mueller 2021-01-20
0e7bdf1 jens-daniel-mueller 2021-01-15
4571843 jens-daniel-mueller 2021-01-14
b3564aa jens-daniel-mueller 2021-01-14
8d032c3 jens-daniel-mueller 2021-01-14
17dee1d jens-daniel-mueller 2021-01-13
7cdea0c jens-daniel-mueller 2021-01-06
fa85b93 jens-daniel-mueller 2021-01-06
e5cb81a Donghe-Zhu 2021-01-05
a499f10 Donghe-Zhu 2021-01-05
fb8a752 Donghe-Zhu 2020-12-23
8fae0b2 Donghe-Zhu 2020-12-21
c8b76b3 jens-daniel-mueller 2020-12-19

6.1.2 Best models

lm_best_target %>%
  ggplot(aes("",
             !!sym(params_local$MLR_criterion),
             col = basin)) +
  geom_hline(yintercept = 10) +
  geom_boxplot() +
  facet_grid(gamma_slab~era) +
  scale_color_brewer(palette = "Set1") +
  labs(x="Number of predictors pooled")

Version Author Date
c7892c1 Donghe-Zhu 2021-03-04
924430b Donghe-Zhu 2021-03-03
0d0bca1 Donghe-Zhu 2021-03-03
cb63c16 Donghe-Zhu 2021-03-03
ffda45a Donghe-Zhu 2021-03-03
691ba81 Donghe-Zhu 2021-03-03
c5e45a2 Donghe-Zhu 2021-03-03
89c3e58 Donghe-Zhu 2021-03-03
c407a50 Donghe-Zhu 2021-03-03
c911669 Donghe-Zhu 2021-03-03
b71c719 Donghe-Zhu 2021-03-01
13666ca Donghe-Zhu 2021-03-01
c6e60fe Donghe-Zhu 2021-03-01
7a388f7 Donghe-Zhu 2021-03-01
799e913 Donghe-Zhu 2021-03-01
66ff99f Donghe-Zhu 2021-03-01
ac9bb7a Donghe-Zhu 2021-02-28
efdc047 Donghe-Zhu 2021-02-28
e9a7418 Donghe-Zhu 2021-02-28
e152917 Donghe-Zhu 2021-02-28
287123c Donghe-Zhu 2021-02-27
54d5b5b Donghe-Zhu 2021-02-27
330f064 Donghe-Zhu 2021-02-27
adbc9bc Donghe-Zhu 2021-02-27
5937141 Donghe-Zhu 2021-02-27
4414bbf Donghe-Zhu 2021-02-27
a265efb Donghe-Zhu 2021-02-27
19edd1e Donghe-Zhu 2021-02-27
f20483f Donghe-Zhu 2021-02-26
6a2c7b3 Donghe-Zhu 2021-02-25
354c224 Donghe-Zhu 2021-02-24
1a0a88a Donghe-Zhu 2021-02-24
57f701e Donghe-Zhu 2021-02-24
06f3149 Donghe-Zhu 2021-02-16
401eab3 Donghe-Zhu 2021-02-15
e3bba84 Donghe-Zhu 2021-02-15
5dce4b1 Donghe-Zhu 2021-02-15
4469a0c Donghe-Zhu 2021-02-13
5ae6a69 Donghe-Zhu 2021-02-10
05385dc Donghe-Zhu 2021-02-10
f791ae4 Donghe-Zhu 2021-02-09
f71ae34 Donghe-Zhu 2021-02-09
c011832 Donghe-Zhu 2021-02-09
a145fa7 Donghe-Zhu 2021-02-09
c344e42 Donghe-Zhu 2021-02-08
2f095d7 Donghe-Zhu 2021-02-07
1fad5f1 Donghe-Zhu 2021-02-07
ca03c39 Donghe-Zhu 2021-02-07
e2ffc14 Donghe-Zhu 2021-02-05
cd7c52c Donghe-Zhu 2021-02-04
bcf84f4 Donghe-Zhu 2021-02-02
a518739 Donghe-Zhu 2021-02-01
61666de Donghe-Zhu 2021-01-31
865b582 Donghe-Zhu 2021-01-31
3e68089 Donghe-Zhu 2021-01-31
ecf335c Donghe-Zhu 2021-01-31
a618965 Donghe-Zhu 2021-01-31
59e006e Donghe-Zhu 2021-01-31
a1c8f87 Donghe-Zhu 2021-01-31
ae5c18f Donghe-Zhu 2021-01-31
b50fe52 Donghe-Zhu 2021-01-31
ac99ae5 jens-daniel-mueller 2021-01-29
b5bdcaf Donghe-Zhu 2021-01-29
442010d Donghe-Zhu 2021-01-29
372adf5 Donghe-Zhu 2021-01-29
af8788e Donghe-Zhu 2021-01-29
21c91c9 Donghe-Zhu 2021-01-29
eded038 Donghe-Zhu 2021-01-29
541d4dd Donghe-Zhu 2021-01-29
6a75576 Donghe-Zhu 2021-01-28
16fba40 Donghe-Zhu 2021-01-28
12bc567 Donghe-Zhu 2021-01-27
ceed31b Donghe-Zhu 2021-01-27
342402d Donghe-Zhu 2021-01-27
5bad5c2 Donghe-Zhu 2021-01-27
61efb56 Donghe-Zhu 2021-01-25
48f638e Donghe-Zhu 2021-01-25
c1cec47 Donghe-Zhu 2021-01-25
05ffb0c Donghe-Zhu 2021-01-25
8b97165 Donghe-Zhu 2021-01-25
c569946 Donghe-Zhu 2021-01-24
a2f0d56 Donghe-Zhu 2021-01-23
28509fc Donghe-Zhu 2021-01-23
4c28e4a Donghe-Zhu 2021-01-22
24cc264 jens-daniel-mueller 2021-01-22
7891955 Donghe-Zhu 2021-01-21
d4cf1cb Donghe-Zhu 2021-01-21
1f3e5b6 jens-daniel-mueller 2021-01-20
0e7bdf1 jens-daniel-mueller 2021-01-15
4571843 jens-daniel-mueller 2021-01-14
b3564aa jens-daniel-mueller 2021-01-14
8d032c3 jens-daniel-mueller 2021-01-14
17dee1d jens-daniel-mueller 2021-01-13
7cdea0c jens-daniel-mueller 2021-01-06
fa85b93 jens-daniel-mueller 2021-01-06
e5cb81a Donghe-Zhu 2021-01-05
a499f10 Donghe-Zhu 2021-01-05
fb8a752 Donghe-Zhu 2020-12-23
8fae0b2 Donghe-Zhu 2020-12-21
c8b76b3 jens-daniel-mueller 2020-12-19

6.2 RMSE correlation between eras

RMSE was plotted to compare the agreement for one model applied to two adjacent eras (ie check whether the same predictor combination performs equal in both eras).

6.2.1 All models

# find max rmse to scale axis
max_rmse <-
  max(c(lm_all_fitted_wide_eras$rmse,
        lm_all_fitted_wide_eras$rmse_sum - lm_all_fitted_wide_eras$rmse))

lm_all_fitted_wide_eras %>%
  ggplot(aes(rmse, rmse_sum - rmse, col = gamma_slab)) +
  geom_point() +
  scale_color_viridis_d() +
  coord_equal(xlim = c(0,max_rmse),
              ylim = c(0,max_rmse)) +
  facet_grid(eras ~ basin)

Version Author Date
c7892c1 Donghe-Zhu 2021-03-04
924430b Donghe-Zhu 2021-03-03
0d0bca1 Donghe-Zhu 2021-03-03
cb63c16 Donghe-Zhu 2021-03-03
ffda45a Donghe-Zhu 2021-03-03
691ba81 Donghe-Zhu 2021-03-03
c5e45a2 Donghe-Zhu 2021-03-03
89c3e58 Donghe-Zhu 2021-03-03
c911669 Donghe-Zhu 2021-03-03
13666ca Donghe-Zhu 2021-03-01
c6e60fe Donghe-Zhu 2021-03-01
7a388f7 Donghe-Zhu 2021-03-01
799e913 Donghe-Zhu 2021-03-01
66ff99f Donghe-Zhu 2021-03-01
ac9bb7a Donghe-Zhu 2021-02-28
efdc047 Donghe-Zhu 2021-02-28
e9a7418 Donghe-Zhu 2021-02-28
287123c Donghe-Zhu 2021-02-27
54d5b5b Donghe-Zhu 2021-02-27
330f064 Donghe-Zhu 2021-02-27
adbc9bc Donghe-Zhu 2021-02-27
5937141 Donghe-Zhu 2021-02-27
4414bbf Donghe-Zhu 2021-02-27
a265efb Donghe-Zhu 2021-02-27
19edd1e Donghe-Zhu 2021-02-27
f20483f Donghe-Zhu 2021-02-26
6a2c7b3 Donghe-Zhu 2021-02-25
02b976d Donghe-Zhu 2021-02-24
354c224 Donghe-Zhu 2021-02-24
1a0a88a Donghe-Zhu 2021-02-24
57f701e Donghe-Zhu 2021-02-24
06f3149 Donghe-Zhu 2021-02-16
e3bba84 Donghe-Zhu 2021-02-15
5dce4b1 Donghe-Zhu 2021-02-15
4469a0c Donghe-Zhu 2021-02-13
5ae6a69 Donghe-Zhu 2021-02-10
05385dc Donghe-Zhu 2021-02-10
f791ae4 Donghe-Zhu 2021-02-09
f71ae34 Donghe-Zhu 2021-02-09
c011832 Donghe-Zhu 2021-02-09
a145fa7 Donghe-Zhu 2021-02-09
c344e42 Donghe-Zhu 2021-02-08
2f095d7 Donghe-Zhu 2021-02-07
1fad5f1 Donghe-Zhu 2021-02-07
ca03c39 Donghe-Zhu 2021-02-07
cd7c52c Donghe-Zhu 2021-02-04
bcf84f4 Donghe-Zhu 2021-02-02
61666de Donghe-Zhu 2021-01-31
865b582 Donghe-Zhu 2021-01-31
3e68089 Donghe-Zhu 2021-01-31
ecf335c Donghe-Zhu 2021-01-31
a618965 Donghe-Zhu 2021-01-31
59e006e Donghe-Zhu 2021-01-31
a1c8f87 Donghe-Zhu 2021-01-31
ae5c18f Donghe-Zhu 2021-01-31
b50fe52 Donghe-Zhu 2021-01-31
ac99ae5 jens-daniel-mueller 2021-01-29
b5bdcaf Donghe-Zhu 2021-01-29
442010d Donghe-Zhu 2021-01-29
372adf5 Donghe-Zhu 2021-01-29
af8788e Donghe-Zhu 2021-01-29
21c91c9 Donghe-Zhu 2021-01-29
eded038 Donghe-Zhu 2021-01-29
541d4dd Donghe-Zhu 2021-01-29
6a75576 Donghe-Zhu 2021-01-28
16fba40 Donghe-Zhu 2021-01-28
12bc567 Donghe-Zhu 2021-01-27
ceed31b Donghe-Zhu 2021-01-27
342402d Donghe-Zhu 2021-01-27
5bad5c2 Donghe-Zhu 2021-01-27
61efb56 Donghe-Zhu 2021-01-25
48f638e Donghe-Zhu 2021-01-25
c1cec47 Donghe-Zhu 2021-01-25
05ffb0c Donghe-Zhu 2021-01-25
8b97165 Donghe-Zhu 2021-01-25
c569946 Donghe-Zhu 2021-01-24
a2f0d56 Donghe-Zhu 2021-01-23
28509fc Donghe-Zhu 2021-01-23
4c28e4a Donghe-Zhu 2021-01-22
24cc264 jens-daniel-mueller 2021-01-22
7891955 Donghe-Zhu 2021-01-21
d4cf1cb Donghe-Zhu 2021-01-21
1f3e5b6 jens-daniel-mueller 2021-01-20
0e7bdf1 jens-daniel-mueller 2021-01-15
4571843 jens-daniel-mueller 2021-01-14
b3564aa jens-daniel-mueller 2021-01-14
8d032c3 jens-daniel-mueller 2021-01-14
17dee1d jens-daniel-mueller 2021-01-13
7cdea0c jens-daniel-mueller 2021-01-06
fa85b93 jens-daniel-mueller 2021-01-06
e5cb81a Donghe-Zhu 2021-01-05
a499f10 Donghe-Zhu 2021-01-05
fb8a752 Donghe-Zhu 2020-12-23
8fae0b2 Donghe-Zhu 2020-12-21
c8b76b3 jens-daniel-mueller 2020-12-19
rm(max_rmse)

6.2.2 Best models

# find max rmse to scale axis
max_rmse <-
  max(c(lm_best$rmse,
        lm_best$rmse_sum - lm_best$rmse))

lm_best %>%
  ggplot(aes(rmse, rmse_sum - rmse, col = gamma_slab)) +
  geom_point() +
  scale_color_viridis_d() +
  coord_equal(xlim = c(0,max_rmse),
              ylim = c(0,max_rmse)) +
  facet_grid(eras ~ basin)

Version Author Date
c7892c1 Donghe-Zhu 2021-03-04
924430b Donghe-Zhu 2021-03-03
0d0bca1 Donghe-Zhu 2021-03-03
cb63c16 Donghe-Zhu 2021-03-03
ffda45a Donghe-Zhu 2021-03-03
691ba81 Donghe-Zhu 2021-03-03
c5e45a2 Donghe-Zhu 2021-03-03
89c3e58 Donghe-Zhu 2021-03-03
c407a50 Donghe-Zhu 2021-03-03
c911669 Donghe-Zhu 2021-03-03
b71c719 Donghe-Zhu 2021-03-01
13666ca Donghe-Zhu 2021-03-01
c6e60fe Donghe-Zhu 2021-03-01
7a388f7 Donghe-Zhu 2021-03-01
799e913 Donghe-Zhu 2021-03-01
66ff99f Donghe-Zhu 2021-03-01
ac9bb7a Donghe-Zhu 2021-02-28
efdc047 Donghe-Zhu 2021-02-28
e9a7418 Donghe-Zhu 2021-02-28
e152917 Donghe-Zhu 2021-02-28
287123c Donghe-Zhu 2021-02-27
54d5b5b Donghe-Zhu 2021-02-27
330f064 Donghe-Zhu 2021-02-27
adbc9bc Donghe-Zhu 2021-02-27
5937141 Donghe-Zhu 2021-02-27
4414bbf Donghe-Zhu 2021-02-27
a265efb Donghe-Zhu 2021-02-27
19edd1e Donghe-Zhu 2021-02-27
f20483f Donghe-Zhu 2021-02-26
6a2c7b3 Donghe-Zhu 2021-02-25
354c224 Donghe-Zhu 2021-02-24
1a0a88a Donghe-Zhu 2021-02-24
57f701e Donghe-Zhu 2021-02-24
06f3149 Donghe-Zhu 2021-02-16
401eab3 Donghe-Zhu 2021-02-15
e3bba84 Donghe-Zhu 2021-02-15
5dce4b1 Donghe-Zhu 2021-02-15
4469a0c Donghe-Zhu 2021-02-13
5ae6a69 Donghe-Zhu 2021-02-10
05385dc Donghe-Zhu 2021-02-10
f791ae4 Donghe-Zhu 2021-02-09
f71ae34 Donghe-Zhu 2021-02-09
c011832 Donghe-Zhu 2021-02-09
a145fa7 Donghe-Zhu 2021-02-09
c344e42 Donghe-Zhu 2021-02-08
2f095d7 Donghe-Zhu 2021-02-07
1fad5f1 Donghe-Zhu 2021-02-07
ca03c39 Donghe-Zhu 2021-02-07
e2ffc14 Donghe-Zhu 2021-02-05
cd7c52c Donghe-Zhu 2021-02-04
bcf84f4 Donghe-Zhu 2021-02-02
a518739 Donghe-Zhu 2021-02-01
61666de Donghe-Zhu 2021-01-31
865b582 Donghe-Zhu 2021-01-31
3e68089 Donghe-Zhu 2021-01-31
ecf335c Donghe-Zhu 2021-01-31
a618965 Donghe-Zhu 2021-01-31
59e006e Donghe-Zhu 2021-01-31
a1c8f87 Donghe-Zhu 2021-01-31
ae5c18f Donghe-Zhu 2021-01-31
b50fe52 Donghe-Zhu 2021-01-31
ac99ae5 jens-daniel-mueller 2021-01-29
b5bdcaf Donghe-Zhu 2021-01-29
442010d Donghe-Zhu 2021-01-29
372adf5 Donghe-Zhu 2021-01-29
af8788e Donghe-Zhu 2021-01-29
21c91c9 Donghe-Zhu 2021-01-29
eded038 Donghe-Zhu 2021-01-29
541d4dd Donghe-Zhu 2021-01-29
6a75576 Donghe-Zhu 2021-01-28
16fba40 Donghe-Zhu 2021-01-28
12bc567 Donghe-Zhu 2021-01-27
ceed31b Donghe-Zhu 2021-01-27
342402d Donghe-Zhu 2021-01-27
5bad5c2 Donghe-Zhu 2021-01-27
61efb56 Donghe-Zhu 2021-01-25
48f638e Donghe-Zhu 2021-01-25
c1cec47 Donghe-Zhu 2021-01-25
05ffb0c Donghe-Zhu 2021-01-25
8b97165 Donghe-Zhu 2021-01-25
c569946 Donghe-Zhu 2021-01-24
a2f0d56 Donghe-Zhu 2021-01-23
28509fc Donghe-Zhu 2021-01-23
4c28e4a Donghe-Zhu 2021-01-22
24cc264 jens-daniel-mueller 2021-01-22
7891955 Donghe-Zhu 2021-01-21
d4cf1cb Donghe-Zhu 2021-01-21
1f3e5b6 jens-daniel-mueller 2021-01-20
0e7bdf1 jens-daniel-mueller 2021-01-15
4571843 jens-daniel-mueller 2021-01-14
b3564aa jens-daniel-mueller 2021-01-14
8d032c3 jens-daniel-mueller 2021-01-14
17dee1d jens-daniel-mueller 2021-01-13
7cdea0c jens-daniel-mueller 2021-01-06
fa85b93 jens-daniel-mueller 2021-01-06
e5cb81a Donghe-Zhu 2021-01-05
a499f10 Donghe-Zhu 2021-01-05
fb8a752 Donghe-Zhu 2020-12-23
8fae0b2 Donghe-Zhu 2020-12-21
c8b76b3 jens-daniel-mueller 2020-12-19
rm(max_rmse)

6.3 Predictor counts

The number of models where a particular predictor was included were counted for each basin, density slab and compared eras

# calculate cases of predictor used
lm_all_stats <- lm_best_long %>% 
  filter(term != "(Intercept)",
         delta_coeff != 0) %>% 
  group_by(basin, eras, gamma_slab) %>% 
  count(term) %>% 
  ungroup() %>% 
  pivot_wider(values_from = n,
              names_from = term,
              values_fill = 0)

# print table
lm_all_stats %>%
  gt(rowname_col = "gamma_slab",
     groupname_col = c("basin", "eras")) %>% 
  summary_rows(
    groups = TRUE,
    fns = list(total = "sum")
  )
aou nitrate phosphate phosphate_star sal silicate temp
Atlantic - 1982-1990 --> 1991-2014
(-Inf,26] 5 1 4 5 3 3 2
(26,26.5] 5 3 2 4 1 4 4
(26.5,26.75] 5 1 4 4 2 5 2
(26.75,27] 5 1 4 4 1 5 3
(27,27.25] 5 2 3 4 3 5 2
(27.25,27.5] 5 4 1 3 3 5 2
(27.5,27.75] 5 1 4 3 4 3 1
(27.75,27.85] 5 2 3 3 5 4 0
(27.85,27.95] 5 0 5 5 2 3 2
(27.95,28.05] 5 2 3 5 2 3 3
(28.05,28.1] 5 0 5 5 2 3 2
(28.1,28.15] 5 1 4 5 3 4 1
(28.15,28.2] 5 5 0 4 2 3 3
(28.2, Inf] 5 5 0 3 4 3 1
total 70.00 28.00 42.00 57.00 37.00 53.00 28.00
Atlantic - 1991-2014 --> 2015-2019
(-Inf,26] 5 0 4 5 3 3 2
(26,26.5] 5 3 2 4 1 4 4
(26.5,26.75] 5 1 4 4 2 5 2
(26.75,27] 5 1 4 4 2 5 2
(27,27.25] 5 2 2 4 4 5 1
(27.25,27.5] 5 5 0 3 2 5 2
(27.5,27.75] 5 1 4 3 5 3 0
(27.75,27.85] 5 2 3 3 5 4 0
(27.85,27.95] 5 0 5 5 2 3 2
(27.95,28.05] 5 2 3 5 2 3 3
(28.05,28.1] 5 0 5 5 2 3 2
(28.1,28.15] 5 1 4 5 3 3 2
(28.15,28.2] 5 5 0 4 2 3 3
(28.2, Inf] 5 5 0 3 4 3 1
total 70.00 28.00 40.00 57.00 39.00 52.00 26.00
Indo-Pacific - 1982-1990 --> 1991-2014
(-Inf,26] 4 1 4 5 2 4 3
(26,26.5] 5 1 4 4 1 5 3
(26.5,26.75] 4 2 3 5 1 5 3
(26.75,27] 5 0 5 5 2 3 2
(27,27.25] 5 1 4 5 1 4 3
(27.25,27.5] 5 2 2 5 3 5 2
(27.5,27.75] 3 2 2 5 5 5 0
(27.75,27.85] 5 1 4 4 1 5 3
(27.85,27.95] 3 4 1 5 0 3 5
(27.95,28.05] 5 2 3 5 2 5 2
(28.05,28.1] 4 1 4 4 3 5 2
(28.1, Inf] 4 2 3 4 2 5 3
total 52.00 19.00 39.00 56.00 23.00 54.00 31.00
Indo-Pacific - 1991-2014 --> 2015-2019
(-Inf,26] 4 1 4 5 2 4 3
(26,26.5] 5 1 4 4 1 5 3
(26.5,26.75] 4 2 3 5 1 5 3
(26.75,27] 5 0 5 5 2 3 2
(27,27.25] 5 1 4 5 1 4 3
(27.25,27.5] 5 2 2 5 3 5 2
(27.5,27.75] 4 2 2 5 4 5 1
(27.75,27.85] 5 2 3 5 2 4 3
(27.85,27.95] 3 5 0 4 0 3 5
(27.95,28.05] 5 2 3 5 3 3 2
(28.05,28.1] 5 2 3 5 2 5 2
(28.1, Inf] 5 2 3 4 3 5 2
total 55.00 22.00 36.00 57.00 24.00 51.00 31.00

6.4 RMSE alternatives

AIC is an alternative criterion to RMSE to judge model quality, but not (yet) taken into account.

lm_all_fitted_wide_eras %>% 
  ggplot(aes(rmse, aic, col = gamma_slab)) +
  geom_point() +
  scale_color_viridis_d() +
  facet_grid(eras~basin)

Version Author Date
c7892c1 Donghe-Zhu 2021-03-04
924430b Donghe-Zhu 2021-03-03
0d0bca1 Donghe-Zhu 2021-03-03
cb63c16 Donghe-Zhu 2021-03-03
ffda45a Donghe-Zhu 2021-03-03
691ba81 Donghe-Zhu 2021-03-03
c5e45a2 Donghe-Zhu 2021-03-03
89c3e58 Donghe-Zhu 2021-03-03
c911669 Donghe-Zhu 2021-03-03
13666ca Donghe-Zhu 2021-03-01
c6e60fe Donghe-Zhu 2021-03-01
7a388f7 Donghe-Zhu 2021-03-01
799e913 Donghe-Zhu 2021-03-01
66ff99f Donghe-Zhu 2021-03-01
ac9bb7a Donghe-Zhu 2021-02-28
efdc047 Donghe-Zhu 2021-02-28
e9a7418 Donghe-Zhu 2021-02-28
287123c Donghe-Zhu 2021-02-27
54d5b5b Donghe-Zhu 2021-02-27
330f064 Donghe-Zhu 2021-02-27
adbc9bc Donghe-Zhu 2021-02-27
5937141 Donghe-Zhu 2021-02-27
4414bbf Donghe-Zhu 2021-02-27
a265efb Donghe-Zhu 2021-02-27
19edd1e Donghe-Zhu 2021-02-27
f20483f Donghe-Zhu 2021-02-26
6a2c7b3 Donghe-Zhu 2021-02-25
02b976d Donghe-Zhu 2021-02-24
354c224 Donghe-Zhu 2021-02-24
1a0a88a Donghe-Zhu 2021-02-24
57f701e Donghe-Zhu 2021-02-24
06f3149 Donghe-Zhu 2021-02-16
e3bba84 Donghe-Zhu 2021-02-15
5dce4b1 Donghe-Zhu 2021-02-15
4469a0c Donghe-Zhu 2021-02-13
5ae6a69 Donghe-Zhu 2021-02-10
05385dc Donghe-Zhu 2021-02-10
f791ae4 Donghe-Zhu 2021-02-09
f71ae34 Donghe-Zhu 2021-02-09
c011832 Donghe-Zhu 2021-02-09
a145fa7 Donghe-Zhu 2021-02-09
c344e42 Donghe-Zhu 2021-02-08
2f095d7 Donghe-Zhu 2021-02-07
1fad5f1 Donghe-Zhu 2021-02-07
ca03c39 Donghe-Zhu 2021-02-07
cd7c52c Donghe-Zhu 2021-02-04
bcf84f4 Donghe-Zhu 2021-02-02
61666de Donghe-Zhu 2021-01-31
865b582 Donghe-Zhu 2021-01-31
3e68089 Donghe-Zhu 2021-01-31
ecf335c Donghe-Zhu 2021-01-31
a618965 Donghe-Zhu 2021-01-31
59e006e Donghe-Zhu 2021-01-31
a1c8f87 Donghe-Zhu 2021-01-31
ae5c18f Donghe-Zhu 2021-01-31
b50fe52 Donghe-Zhu 2021-01-31
ac99ae5 jens-daniel-mueller 2021-01-29
b5bdcaf Donghe-Zhu 2021-01-29
442010d Donghe-Zhu 2021-01-29
372adf5 Donghe-Zhu 2021-01-29
af8788e Donghe-Zhu 2021-01-29
21c91c9 Donghe-Zhu 2021-01-29
eded038 Donghe-Zhu 2021-01-29
541d4dd Donghe-Zhu 2021-01-29
6a75576 Donghe-Zhu 2021-01-28
16fba40 Donghe-Zhu 2021-01-28
12bc567 Donghe-Zhu 2021-01-27
ceed31b Donghe-Zhu 2021-01-27
342402d Donghe-Zhu 2021-01-27
5bad5c2 Donghe-Zhu 2021-01-27
61efb56 Donghe-Zhu 2021-01-25
48f638e Donghe-Zhu 2021-01-25
c1cec47 Donghe-Zhu 2021-01-25
05ffb0c Donghe-Zhu 2021-01-25
8b97165 Donghe-Zhu 2021-01-25
c569946 Donghe-Zhu 2021-01-24
a2f0d56 Donghe-Zhu 2021-01-23
28509fc Donghe-Zhu 2021-01-23
4c28e4a Donghe-Zhu 2021-01-22
24cc264 jens-daniel-mueller 2021-01-22
7891955 Donghe-Zhu 2021-01-21
d4cf1cb Donghe-Zhu 2021-01-21
1f3e5b6 jens-daniel-mueller 2021-01-20
0e7bdf1 jens-daniel-mueller 2021-01-15
4571843 jens-daniel-mueller 2021-01-14
b3564aa jens-daniel-mueller 2021-01-14
8d032c3 jens-daniel-mueller 2021-01-14
17dee1d jens-daniel-mueller 2021-01-13
7cdea0c jens-daniel-mueller 2021-01-06
fa85b93 jens-daniel-mueller 2021-01-06
e5cb81a Donghe-Zhu 2021-01-05
a499f10 Donghe-Zhu 2021-01-05
fb8a752 Donghe-Zhu 2020-12-23
8fae0b2 Donghe-Zhu 2020-12-21
c8b76b3 jens-daniel-mueller 2020-12-19
lm_best %>% 
  ggplot(aes(rmse, aic, col = gamma_slab)) +
  geom_point() +
  scale_color_viridis_d() +
  facet_grid(eras~basin)

Version Author Date
c7892c1 Donghe-Zhu 2021-03-04
924430b Donghe-Zhu 2021-03-03
0d0bca1 Donghe-Zhu 2021-03-03
cb63c16 Donghe-Zhu 2021-03-03
ffda45a Donghe-Zhu 2021-03-03
691ba81 Donghe-Zhu 2021-03-03
c5e45a2 Donghe-Zhu 2021-03-03
89c3e58 Donghe-Zhu 2021-03-03
c407a50 Donghe-Zhu 2021-03-03
c911669 Donghe-Zhu 2021-03-03
b71c719 Donghe-Zhu 2021-03-01
13666ca Donghe-Zhu 2021-03-01
c6e60fe Donghe-Zhu 2021-03-01
7a388f7 Donghe-Zhu 2021-03-01
799e913 Donghe-Zhu 2021-03-01
66ff99f Donghe-Zhu 2021-03-01
ac9bb7a Donghe-Zhu 2021-02-28
efdc047 Donghe-Zhu 2021-02-28
e9a7418 Donghe-Zhu 2021-02-28
e152917 Donghe-Zhu 2021-02-28
287123c Donghe-Zhu 2021-02-27
54d5b5b Donghe-Zhu 2021-02-27
330f064 Donghe-Zhu 2021-02-27
adbc9bc Donghe-Zhu 2021-02-27
5937141 Donghe-Zhu 2021-02-27
4414bbf Donghe-Zhu 2021-02-27
a265efb Donghe-Zhu 2021-02-27
19edd1e Donghe-Zhu 2021-02-27
f20483f Donghe-Zhu 2021-02-26
6a2c7b3 Donghe-Zhu 2021-02-25
354c224 Donghe-Zhu 2021-02-24
1a0a88a Donghe-Zhu 2021-02-24
57f701e Donghe-Zhu 2021-02-24
06f3149 Donghe-Zhu 2021-02-16
401eab3 Donghe-Zhu 2021-02-15
e3bba84 Donghe-Zhu 2021-02-15
5dce4b1 Donghe-Zhu 2021-02-15
4469a0c Donghe-Zhu 2021-02-13
5ae6a69 Donghe-Zhu 2021-02-10
05385dc Donghe-Zhu 2021-02-10
f791ae4 Donghe-Zhu 2021-02-09
f71ae34 Donghe-Zhu 2021-02-09
c011832 Donghe-Zhu 2021-02-09
a145fa7 Donghe-Zhu 2021-02-09
c344e42 Donghe-Zhu 2021-02-08
2f095d7 Donghe-Zhu 2021-02-07
1fad5f1 Donghe-Zhu 2021-02-07
ca03c39 Donghe-Zhu 2021-02-07
e2ffc14 Donghe-Zhu 2021-02-05
cd7c52c Donghe-Zhu 2021-02-04
bcf84f4 Donghe-Zhu 2021-02-02
a518739 Donghe-Zhu 2021-02-01
61666de Donghe-Zhu 2021-01-31
865b582 Donghe-Zhu 2021-01-31
3e68089 Donghe-Zhu 2021-01-31
ecf335c Donghe-Zhu 2021-01-31
a618965 Donghe-Zhu 2021-01-31
59e006e Donghe-Zhu 2021-01-31
a1c8f87 Donghe-Zhu 2021-01-31
ae5c18f Donghe-Zhu 2021-01-31
b50fe52 Donghe-Zhu 2021-01-31
ac99ae5 jens-daniel-mueller 2021-01-29
b5bdcaf Donghe-Zhu 2021-01-29
442010d Donghe-Zhu 2021-01-29
372adf5 Donghe-Zhu 2021-01-29
af8788e Donghe-Zhu 2021-01-29
21c91c9 Donghe-Zhu 2021-01-29
eded038 Donghe-Zhu 2021-01-29
541d4dd Donghe-Zhu 2021-01-29
6a75576 Donghe-Zhu 2021-01-28
16fba40 Donghe-Zhu 2021-01-28
12bc567 Donghe-Zhu 2021-01-27
ceed31b Donghe-Zhu 2021-01-27
342402d Donghe-Zhu 2021-01-27
5bad5c2 Donghe-Zhu 2021-01-27
61efb56 Donghe-Zhu 2021-01-25
48f638e Donghe-Zhu 2021-01-25
c1cec47 Donghe-Zhu 2021-01-25
05ffb0c Donghe-Zhu 2021-01-25
8b97165 Donghe-Zhu 2021-01-25
c569946 Donghe-Zhu 2021-01-24
a2f0d56 Donghe-Zhu 2021-01-23
28509fc Donghe-Zhu 2021-01-23
4c28e4a Donghe-Zhu 2021-01-22
24cc264 jens-daniel-mueller 2021-01-22
7891955 Donghe-Zhu 2021-01-21
d4cf1cb Donghe-Zhu 2021-01-21
1f3e5b6 jens-daniel-mueller 2021-01-20
0e7bdf1 jens-daniel-mueller 2021-01-15
4571843 jens-daniel-mueller 2021-01-14
b3564aa jens-daniel-mueller 2021-01-14
8d032c3 jens-daniel-mueller 2021-01-14
17dee1d jens-daniel-mueller 2021-01-13
7cdea0c jens-daniel-mueller 2021-01-06
fa85b93 jens-daniel-mueller 2021-01-06
e5cb81a Donghe-Zhu 2021-01-05
a499f10 Donghe-Zhu 2021-01-05
fb8a752 Donghe-Zhu 2020-12-23
8fae0b2 Donghe-Zhu 2020-12-21
c8b76b3 jens-daniel-mueller 2020-12-19

sessionInfo()
R version 4.0.3 (2020-10-10)
Platform: x86_64-pc-linux-gnu (64-bit)
Running under: openSUSE Leap 15.2

Matrix products: default
BLAS:   /usr/local/R-4.0.3/lib64/R/lib/libRblas.so
LAPACK: /usr/local/R-4.0.3/lib64/R/lib/libRlapack.so

locale:
 [1] LC_CTYPE=en_US.UTF-8       LC_NUMERIC=C              
 [3] LC_TIME=en_US.UTF-8        LC_COLLATE=en_US.UTF-8    
 [5] LC_MONETARY=en_US.UTF-8    LC_MESSAGES=en_US.UTF-8   
 [7] LC_PAPER=en_US.UTF-8       LC_NAME=C                 
 [9] LC_ADDRESS=C               LC_TELEPHONE=C            
[11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C       

attached base packages:
[1] stats     graphics  grDevices utils     datasets  methods   base     

other attached packages:
 [1] gt_0.2.2         corrr_0.4.3      broom_0.7.5      kableExtra_1.3.1
 [5] knitr_1.30       olsrr_0.5.3      GGally_2.0.0     lubridate_1.7.9 
 [9] metR_0.9.0       scico_1.2.0      patchwork_1.1.1  collapse_1.5.0  
[13] forcats_0.5.0    stringr_1.4.0    dplyr_1.0.2      purrr_0.3.4     
[17] readr_1.4.0      tidyr_1.1.2      tibble_3.0.4     ggplot2_3.3.3   
[21] tidyverse_1.3.0  workflowr_1.6.2 

loaded via a namespace (and not attached):
 [1] fs_1.5.0                 webshot_0.5.2            RColorBrewer_1.1-2      
 [4] httr_1.4.2               rprojroot_2.0.2          tools_4.0.3             
 [7] backports_1.1.10         R6_2.5.0                 nortest_1.0-4           
[10] DBI_1.1.0                colorspace_2.0-0         withr_2.3.0             
[13] gridExtra_2.3            tidyselect_1.1.0         curl_4.3                
[16] compiler_4.0.3           git2r_0.27.1             cli_2.2.0               
[19] rvest_0.3.6              xml2_1.3.2               sass_0.2.0              
[22] labeling_0.4.2           scales_1.1.1             checkmate_2.0.0         
[25] goftest_1.2-2            digest_0.6.27            foreign_0.8-80          
[28] rmarkdown_2.5            rio_0.5.16               pkgconfig_2.0.3         
[31] htmltools_0.5.0          highr_0.8                dbplyr_1.4.4            
[34] rlang_0.4.10             readxl_1.3.1             rstudioapi_0.13         
[37] farver_2.0.3             generics_0.1.0           jsonlite_1.7.2          
[40] zip_2.1.1                car_3.0-10               magrittr_2.0.1          
[43] Matrix_1.2-18            Rcpp_1.0.5               munsell_0.5.0           
[46] fansi_0.4.1              abind_1.4-5              lifecycle_0.2.0         
[49] stringi_1.5.3            whisker_0.4              yaml_2.2.1              
[52] carData_3.0-4            plyr_1.8.6               grid_4.0.3              
[55] blob_1.2.1               parallel_4.0.3           promises_1.1.1          
[58] crayon_1.3.4             lattice_0.20-41          haven_2.3.1             
[61] hms_0.5.3                pillar_1.4.7             reprex_0.3.0            
[64] glue_1.4.2               evaluate_0.14            RcppArmadillo_0.10.1.2.2
[67] data.table_1.13.6        modelr_0.1.8             vctrs_0.3.6             
[70] httpuv_1.5.4             cellranger_1.1.0         gtable_0.3.0            
[73] reshape_0.8.8            assertthat_0.2.1         xfun_0.20               
[76] openxlsx_4.2.3           RcppEigen_0.3.3.9.1      later_1.1.0.1           
[79] viridisLite_0.3.0        ellipsis_0.3.1           here_1.0.1