Last updated: 2021-03-05

Checks: 7 0

Knit directory: emlr_mod_v_XXX/

This reproducible R Markdown analysis was created with workflowr (version 1.6.2). The Checks tab describes the reproducibility checks that were applied when the results were created. The Past versions tab lists the development history.


Great! Since the R Markdown file has been committed to the Git repository, you know the exact version of the code that produced these results.

Great job! The global environment was empty. Objects defined in the global environment can affect the analysis in your R Markdown file in unknown ways. For reproduciblity it’s best to always run the code in an empty environment.

The command set.seed(20200707) was run prior to running the code in the R Markdown file. Setting a seed ensures that any results that rely on randomness, e.g. subsampling or permutations, are reproducible.

Great job! Recording the operating system, R version, and package versions is critical for reproducibility.

Nice! There were no cached chunks for this analysis, so you can be confident that you successfully produced the results during this run.

Great job! Using relative paths to the files within your workflowr project makes it easier to run your code on other machines.

Great! You are using Git for version control. Tracking code development and connecting the code version to the results is critical for reproducibility.

The results in this page were generated with repository version cdcf407. See the Past versions tab to see a history of the changes made to the R Markdown and HTML files.

Note that you need to be careful to ensure that all relevant files for the analysis have been committed to Git prior to generating the results (you can use wflow_publish or wflow_git_commit). workflowr only checks the R Markdown file, but you know if there are other scripts or data files that it depends on. Below is the status of the Git repository when the results were generated:


Ignored files:
    Ignored:    .Rhistory
    Ignored:    .Rproj.user/

Unstaged changes:
    Modified:   data/auxillary/params_local.rds

Note that any generated files, e.g. HTML, png, CSS, etc., are not included in this status report because it is ok for generated content to have uncommitted changes.


These are the previous versions of the repository in which changes were made to the R Markdown (analysis/eMLR_model_fitting.Rmd) and HTML (docs/eMLR_model_fitting.html) files. If you’ve configured a remote Git repository (see ?wflow_git_remote), click on the hyperlinks in the table below to view the files as they were in that past version.

File Version Author Date Message
html e8c6f30 Donghe-Zhu 2021-03-04 Build site.
html 59288fe Donghe-Zhu 2021-03-04 Build site.
html 731abc8 Donghe-Zhu 2021-03-04 Build site.
html e2a5a33 Donghe-Zhu 2021-03-04 Build site.
html c7892c1 Donghe-Zhu 2021-03-04 Build site.
html 924430b Donghe-Zhu 2021-03-03 Build site.
html 0d0bca1 Donghe-Zhu 2021-03-03 Build site.
html cb63c16 Donghe-Zhu 2021-03-03 Build site.
html ffda45a Donghe-Zhu 2021-03-03 Build site.
html 691ba81 Donghe-Zhu 2021-03-03 Build site.
html c5e45a2 Donghe-Zhu 2021-03-03 Build site.
html 89c3e58 Donghe-Zhu 2021-03-03 Build site.
html c407a50 Donghe-Zhu 2021-03-03 Build site.
html c911669 Donghe-Zhu 2021-03-03 Build site.
Rmd e1f9d21 Donghe-Zhu 2021-03-03 local rebuild
html b71c719 Donghe-Zhu 2021-03-01 Build site.
html 13666ca Donghe-Zhu 2021-03-01 Build site.
Rmd c3195f4 Donghe-Zhu 2021-03-01 local rebuild
html c6e60fe Donghe-Zhu 2021-03-01 Build site.
Rmd 8ef147d Donghe-Zhu 2021-03-01 local rebuild
html 7a388f7 Donghe-Zhu 2021-03-01 Build site.
html 799e913 Donghe-Zhu 2021-03-01 Build site.
Rmd aa780a7 Donghe-Zhu 2021-03-01 local rebuild
html 66ff99f Donghe-Zhu 2021-03-01 Build site.
html ac9bb7a Donghe-Zhu 2021-02-28 Build site.
html efdc047 Donghe-Zhu 2021-02-28 Build site.
html e9a7418 Donghe-Zhu 2021-02-28 Build site.
Rmd eac1b0e Donghe-Zhu 2021-02-28 local rebuild
html e152917 Donghe-Zhu 2021-02-28 Build site.
html feb991c Donghe-Zhu 2021-02-27 Build site.
Rmd 4563314 Donghe-Zhu 2021-02-27 local rebuild
html 287123c Donghe-Zhu 2021-02-27 Build site.
Rmd 764a9c2 Donghe-Zhu 2021-02-27 local rebuild
html 54d5b5b Donghe-Zhu 2021-02-27 Build site.
Rmd 2e836bf Donghe-Zhu 2021-02-27 local rebuild
html 330f064 Donghe-Zhu 2021-02-27 Build site.
Rmd f360282 Donghe-Zhu 2021-02-27 local rebuild
html adbc9bc Donghe-Zhu 2021-02-27 Build site.
Rmd a8a8f9c Donghe-Zhu 2021-02-27 local rebuild
html 5937141 Donghe-Zhu 2021-02-27 Build site.
Rmd 5f0bfca Donghe-Zhu 2021-02-27 local rebuild
html 4414bbf Donghe-Zhu 2021-02-27 Build site.
html a265efb Donghe-Zhu 2021-02-27 Build site.
html 19edd1e Donghe-Zhu 2021-02-27 Build site.
Rmd 1ae5bb4 Donghe-Zhu 2021-02-27 local rebuild
html f20483f Donghe-Zhu 2021-02-26 Build site.
html 6a2c7b3 Donghe-Zhu 2021-02-25 Build site.
html 02b976d Donghe-Zhu 2021-02-24 Build site.
html 354c224 Donghe-Zhu 2021-02-24 Build site.
Rmd d910d39 Donghe-Zhu 2021-02-24 local rebuild
html 1a0a88a Donghe-Zhu 2021-02-24 Build site.
Rmd 663e891 Donghe-Zhu 2021-02-24 local rebuild
html 57f701e Donghe-Zhu 2021-02-24 Build site.
html 06f3149 Donghe-Zhu 2021-02-16 Build site.
html 401eab3 Donghe-Zhu 2021-02-15 Build site.
html e3bba84 Donghe-Zhu 2021-02-15 Build site.
html 5dce4b1 Donghe-Zhu 2021-02-15 Build site.
Rmd 35b0f2e Donghe-Zhu 2021-02-15 local rebuild
html 4469a0c Donghe-Zhu 2021-02-13 Build site.
Rmd 8186d57 Donghe-Zhu 2021-02-10 apply nr_obs
html 5ae6a69 Donghe-Zhu 2021-02-10 Build site.
Rmd eeb6557 Donghe-Zhu 2021-02-10 local rebuild
html 05385dc Donghe-Zhu 2021-02-10 Build site.
html f791ae4 Donghe-Zhu 2021-02-09 Build site.
html f71ae34 Donghe-Zhu 2021-02-09 Build site.
html c011832 Donghe-Zhu 2021-02-09 Build site.
html a145fa7 Donghe-Zhu 2021-02-09 Build site.
Rmd 37a41c8 Donghe-Zhu 2021-02-09 local rebuild
html c344e42 Donghe-Zhu 2021-02-08 Build site.
Rmd 8f5fa79 Donghe-Zhu 2021-02-08 local rebuild
html 2f095d7 Donghe-Zhu 2021-02-07 Build site.
html 2305044 Donghe-Zhu 2021-02-07 Build site.
Rmd c3638c1 Donghe-Zhu 2021-02-07 local rebuild
html 1fad5f1 Donghe-Zhu 2021-02-07 Build site.
html ca03c39 Donghe-Zhu 2021-02-07 Build site.
html e2ffc14 Donghe-Zhu 2021-02-05 Build site.
html cd7c52c Donghe-Zhu 2021-02-04 Build site.
Rmd bcf91a8 jens-daniel-mueller 2021-02-04 separate MLR tables, added plot residuals vs location
html bcf84f4 Donghe-Zhu 2021-02-02 Build site.
html a518739 Donghe-Zhu 2021-02-01 Build site.
html 61666de Donghe-Zhu 2021-01-31 Build site.
html 865b582 Donghe-Zhu 2021-01-31 Build site.
html 3e68089 Donghe-Zhu 2021-01-31 Build site.
html ecf335c Donghe-Zhu 2021-01-31 Build site.
html a618965 Donghe-Zhu 2021-01-31 Build site.
html 59e006e Donghe-Zhu 2021-01-31 Build site.
html a1c8f87 Donghe-Zhu 2021-01-31 Build site.
html ae5c18f Donghe-Zhu 2021-01-31 Build site.
html b50fe52 Donghe-Zhu 2021-01-31 Build site.
Rmd ac99ae5 jens-daniel-mueller 2021-01-29 code review
html ac99ae5 jens-daniel-mueller 2021-01-29 code review
html b5bdcaf Donghe-Zhu 2021-01-29 Build site.
Rmd b234505 Donghe-Zhu 2021-01-29 MLR approach across all depth
html 442010d Donghe-Zhu 2021-01-29 Build site.
Rmd e67e7dd Donghe-Zhu 2021-01-29 surface equilibrium approach across all latitudes irrespective of gamma
html 372adf5 Donghe-Zhu 2021-01-29 Build site.
html af8788e Donghe-Zhu 2021-01-29 Build site.
html 21c91c9 Donghe-Zhu 2021-01-29 Build site.
html eded038 Donghe-Zhu 2021-01-29 Build site.
html 541d4dd Donghe-Zhu 2021-01-29 Build site.
html 6a75576 Donghe-Zhu 2021-01-28 Build site.
html 16fba40 Donghe-Zhu 2021-01-28 Build site.
Rmd aecf0c6 Donghe-Zhu 2021-01-28 diagnostic ploting
Rmd a02684e Donghe-Zhu 2021-01-28 error
Rmd 4584be9 Donghe-Zhu 2021-01-28 latest
html 12bc567 Donghe-Zhu 2021-01-27 Build site.
html ceed31b Donghe-Zhu 2021-01-27 Build site.
html 342402d Donghe-Zhu 2021-01-27 Build site.
html 5bad5c2 Donghe-Zhu 2021-01-27 Build site.
Rmd c2c9529 Donghe-Zhu 2021-01-27 random subsetting based on lat
html 61efb56 Donghe-Zhu 2021-01-25 Build site.
html 48f638e Donghe-Zhu 2021-01-25 Build site.
html c1cec47 Donghe-Zhu 2021-01-25 Build site.
html 05ffb0c Donghe-Zhu 2021-01-25 Build site.
html 8b97165 Donghe-Zhu 2021-01-25 Build site.
html c569946 Donghe-Zhu 2021-01-24 Build site.
html a2f0d56 Donghe-Zhu 2021-01-23 Build site.
html 28509fc Donghe-Zhu 2021-01-23 Build site.
html 4c28e4a Donghe-Zhu 2021-01-22 Build site.
html 24cc264 jens-daniel-mueller 2021-01-22 cleaned /docs before creating copies
html 88eb28f Donghe-Zhu 2021-01-21 Build site.
html 2679490 Donghe-Zhu 2021-01-21 Build site.
html 7891955 Donghe-Zhu 2021-01-21 Build site.
html d4cf1cb Donghe-Zhu 2021-01-21 Build site.
Rmd 167eeec Donghe-Zhu 2021-01-21 surface DIC calculation with atmospheric equilibrium option
html 1f3e5b6 jens-daniel-mueller 2021-01-20 Build site.
html 0e7bdf1 jens-daniel-mueller 2021-01-15 cleaning template repository
html 73cbef3 jens-daniel-mueller 2021-01-15 Build site.
html 4571843 jens-daniel-mueller 2021-01-14 revision and html deleted for template copying
html 23151cd jens-daniel-mueller 2021-01-14 Build site.
html b3564aa jens-daniel-mueller 2021-01-14 Build site.
html 8d032c3 jens-daniel-mueller 2021-01-14 Build site.
html 022871c Donghe-Zhu 2021-01-13 Build site.
Rmd d44f36f Donghe-Zhu 2021-01-13 reorder analysis final
html 17dee1d jens-daniel-mueller 2021-01-13 Build site.
Rmd 9e04fd7 jens-daniel-mueller 2021-01-13 local rebuild after revision
html a076226 Donghe-Zhu 2021-01-11 Build site.
Rmd 52eff18 Donghe-Zhu 2021-01-09 Implemet model_run and subsetting
html 7cdea0c jens-daniel-mueller 2021-01-06 Build site.
Rmd b5934dd jens-daniel-mueller 2021-01-06 local rebuild after revision
html fa85b93 jens-daniel-mueller 2021-01-06 Build site.
html e5cb81a Donghe-Zhu 2021-01-05 Build site.
Rmd 608cc45 Donghe-Zhu 2021-01-05 modification of analysis
html a499f10 Donghe-Zhu 2021-01-05 Build site.
Rmd 715bdb4 Donghe-Zhu 2021-01-02 model modification
html fb8a752 Donghe-Zhu 2020-12-23 Build site.
Rmd 82e3c9c Donghe-Zhu 2020-12-23 first build after creating model template
html 8fae0b2 Donghe-Zhu 2020-12-21 Build site.
Rmd 00a1322 Donghe-Zhu 2020-12-21 first build after creating model template
Rmd d73ae35 Donghe-Zhu 2020-12-21 first version with lm error
html c8b76b3 jens-daniel-mueller 2020-12-19 Build site.
Rmd b5fedce jens-daniel-mueller 2020-12-19 first build after creating model template
Rmd 8e8abf5 Jens Müller 2020-12-18 Initial commit

1 Required data

Required are:

  • cleaned and prepared GLODAP-based synthetic model subsetting file
GLODAP <-
  read_csv(paste(path_version_data,
                 "GLODAPv2.2020_MLR_fitting_ready.csv",
                 sep = ""))

2 Predictor combinations

Find all possible combinations of following considered predictor variables:

  • sal, temp, aou, nitrate, silicate, phosphate, phosphate_star
# the following code is a workaround to find all predictor combinations
# using the olsrr package and fit all models for one era, slab, and basin

i_basin <- unique(GLODAP$basin)[1]
i_era   <- unique(GLODAP$era)[1]

# subset one basin and era for fitting
GLODAP_basin_era <- GLODAP %>%
  filter(basin == i_basin, era == i_era)

i_gamma_slab <- unique(GLODAP_basin_era$gamma_slab)[1]
print(i_gamma_slab)

# subset one gamma slab
GLODAP_basin_era_slab <- GLODAP_basin_era %>%
  filter(gamma_slab == i_gamma_slab)

# fit the full linear model, i.e. all predictor combinations
lm_full <- lm(paste(
  params_local$MLR_target,
  paste(params_local$MLR_predictors, collapse = " + "),
  sep = " ~ "
),
data = GLODAP_basin_era_slab)

# fit linear models for all possible predictor combinations
# unfortunately, this functions does not provide model coefficients (yet)
lm_all <- ols_step_all_possible(lm_full)

# convert to tibble
lm_all <- as_tibble(lm_all)

# extract relevant columns and format model formula
lm_all <- lm_all %>% 
  select(n, predictors) %>% 
  mutate(lm_coeff = str_replace_all(predictors, " ", " + "),
         lm_coeff = paste(params_local$MLR_target, "~", lm_coeff))

# remove certain predictor combinations
# lm_rm_ph <- lm_all %>%
#   filter(str_detect(lm_coeff, "phosphate_star")) %>%
#   mutate(lm_coeff_filter = str_remove(lm_coeff, "phosphate_star")) %>%
#   filter(
#     str_detect(lm_coeff_filter, "oxygen") &
#       str_detect(lm_coeff_filter, "phosphate")
#   )

# lm_rm_si <- lm_all %>%
#   filter(str_detect(lm_coeff, "silicate_star")) %>%
#   mutate(lm_coeff_filter = str_remove(lm_coeff, "silicate_star")) %>%
#   filter(str_detect(lm_coeff_filter, "silicate"))

# lm_rm_o2 <- lm_all %>%
#   filter(str_detect(lm_coeff, "phosphate_star")) %>%
#   mutate(lm_coeff_filter = str_remove(lm_coeff, "phosphate_star")) %>%
#   filter(
#     str_detect(lm_coeff_filter, "phosphate") &
#       str_detect(lm_coeff_filter, "oxygen")
#   )

# lm_rm <- bind_rows(lm_rm_ph, lm_rm_o2) %>%
#   select(-lm_coeff_filter) %>%
#   unique()


# remove temp sal predictor combination
lm_all <- lm_all %>%
  # filter(!(
  #   str_detect(lm_coeff, "temp") &
  #     str_detect(lm_coeff, "phosphate_star")
  # )) %>%
  mutate(lm_coeff_filter = str_remove(lm_coeff, "phosphate_star")) %>%
  filter(!(str_detect(lm_coeff_filter, "nitrate") &
             str_detect(lm_coeff_filter, "phosphate")
  )) %>%
  filter(!(
    str_detect(lm_coeff_filter, "temp") &
      str_detect(lm_coeff_filter, "sal")
  )) %>%
  filter(!(
    str_detect(lm_coeff_filter, "oxygen") &
      str_detect(lm_coeff_filter, "aou")
  )) %>%
  select(-lm_coeff_filter)

# lm_rm <- lm_rm_ph %>%
#   select(-lm_coeff_filter) %>%
#   unique()
# 
# lm_all <- anti_join(lm_all, lm_rm)

# remove helper objects
rm(
  i_gamma_slab,
  i_era,
  i_basin,
  GLODAP_basin_era,
  GLODAP_basin_era_slab,
  lm_full,
  lm_rm_ph,
  lm_rm_si,
  lm_rm_o2,
  lm_rm
)

3 Apply predictor threshold

Select combinations with a total number of predictors in the range:

  • Minimum: 3
  • Maximum: 9
lm_all <- lm_all %>% 
  filter(n >= params_local$MLR_predictors_min,
         n <= params_local$MLR_predictors_max)

This results in a total number of MLR models of:

  • 45

4 Fit all models

Individual linear regression models were fitted for the chosen target variable:

  • cstar

as a function of each predictor combination. Fitting was performed separately within each basin, era, and slab. Model diagnostics, such as the root mean squared error (RMSE), were calculated for each fitted model.

# loop across all basins, era, gamma slabs, and MLRs
# fit all MLR models
for (i_basin in unique(GLODAP$basin)) {
  for (i_era in unique(GLODAP$era)) {
    #i_basin <- unique(GLODAP$basin)[1]
    #i_era   <- unique(GLODAP$era)[1]
    print(i_basin)
    print(i_era)
    
    GLODAP_basin_era <- GLODAP %>%
      filter(basin == i_basin, era == i_era)
    
    for (i_gamma_slab in unique(GLODAP_basin_era$gamma_slab)) {
      #i_gamma_slab <- unique(GLODAP_basin_era$gamma_slab)[1]
      print(i_gamma_slab)
      
      GLODAP_basin_era_slab <- GLODAP_basin_era %>%
        filter(gamma_slab == i_gamma_slab)
      
      # number of observations used for each fitting model
      i_nr_obs = nrow(GLODAP_basin_era_slab)
      
      for (i_predictors in unique(lm_all$predictors)) {
        #i_predictors <- unique(lm_all$predictors)[1]
        
        # extract one model definition
        i_lm <- lm_all %>%
          filter(predictors == i_predictors) %>%
          select(lm_coeff) %>%
          pull()
        
        # extract number of predictors
        i_n_predictors <- lm_all %>%
          filter(predictors == i_predictors) %>%
          select(n) %>%
          pull()
        
        if (i_nr_obs > i_n_predictors) {
          # fit model
          if (params_local$MLR_type == "rlm") {
            i_lm_fit <- MASS::rlm(as.formula(i_lm),
                                  data = GLODAP_basin_era_slab)
          }
          
          if (params_local$MLR_type == "lm") {
            i_lm_fit <- lm(as.formula(i_lm),
                           data = GLODAP_basin_era_slab)
          }
          
          # find max predictor correlation
          i_cor_max <- GLODAP_basin_era_slab %>%
            select(!!!syms(str_split(i_predictors, " ",
                                     simplify = TRUE))) %>%
            correlate(quiet = TRUE) %>%
            select(-term) %>%
            abs() %>%
            max(na.rm = TRUE)
          
          # calculate root mean squared error
          i_rmse <- sqrt(c(crossprod(i_lm_fit$residuals)) /
                           length(i_lm_fit$residuals))
          
          # calculate maximum residual
          i_resid_max <- max(abs(i_lm_fit$residuals))
          
          # calculate Akaike information criterion aic
          i_aic <- AIC(i_lm_fit)
          
          # collect model coefficients and diagnostics
          coefficients <- tidy(i_lm_fit)
          
          coefficients <- coefficients %>%
            mutate(
              basin = i_basin,
              era = i_era,
              gamma_slab = i_gamma_slab,
              model = i_lm,
              nr_obs = i_nr_obs,
              rmse = i_rmse,
              aic = i_aic,
              resid_max = i_resid_max,
              n_predictors = i_n_predictors,
              na_predictor = anyNA(coefficients$estimate),
              cor_max = i_cor_max
            )
          
          if (exists("lm_all_fitted")) {
            lm_all_fitted <- bind_rows(lm_all_fitted, coefficients)
          }
          
          if (!exists("lm_all_fitted")) {
            lm_all_fitted <- coefficients
          }
        }
      }
    }
  }
}

rm(
  i_lm_fit,
  coefficients,
  i_rmse,
  GLODAP_basin_era,
  GLODAP_basin_era_slab,
  i_lm,
  i_basin,
  i_era,
  i_gamma_slab,
  i_nr_obs,
  i_predictors,
  i_aic,
  i_n_predictors,
  i_resid_max
)

5 Prepare coeffcients

Coefficients are prepared for the mapping of Cant and the chosen target variable.

5.1 Formatting

# select relevant columns
lm_all_fitted <- lm_all_fitted %>%
  select(
    basin,
    gamma_slab,
    era,
    model,
    nr_obs,
    n_predictors,
    term,
    estimate,
    rmse,
    aic,
    resid_max,
    na_predictor,
    cor_max
  )

# set coefficient to zero if not fitted (=NA)
lm_all_fitted <- lm_all_fitted %>%
  mutate(estimate = if_else(is.na(estimate), 0, estimate))

# Prepare model coefficients for mapping of target variable
lm_all_fitted_wide <- lm_all_fitted %>%
  pivot_wider(
    values_from = estimate,
    names_from = term,
    names_prefix = "coeff_",
    values_fill = 0
  )

5.2 Predictor selection

Within each basin and slab, the following number of best linear regression models was selected:

  • 5

The criterion used to select the best models was:

  • aic

The criterion was summed up for two adjacent eras, and the models with lowest summed values were selected.

Please note, that currently the lm() function produces NAs for some predictors. It is not yet entirely clear when this happens, but presumably it is caused by some form of collinearity between predictors, such that including another predictor does not help to explain the target variable any better. The issues also expresses as exactly identical rmse values of different models. As an interim solution, models with fitted NA predictors were not included.

# remove models with predictors fitted as NA

lm_all_fitted_wide <- lm_all_fitted_wide %>%
  filter(na_predictor == FALSE)
# calculate RMSE sum for adjacent eras
lm_all_fitted_wide_eras <- lm_all_fitted_wide  %>%
  select(basin, gamma_slab, model, era, nr_obs, rmse, aic, resid_max) %>%
  arrange(era) %>%
  group_by(basin, gamma_slab, model) %>%
  mutate(
    eras = paste(lag(era), era, sep = " --> "),
    rmse_sum = rmse + lag(rmse),
    aic_sum = aic + lag(aic)
  ) %>%
  ungroup() %>%
  select(-c(era)) %>%
  drop_na()

# subset models with lowest summed criterion
# chose which criterion is applied

if (params_local$MLR_criterion == "aic") {
  lm_best <- lm_all_fitted_wide_eras %>%
    group_by(basin, gamma_slab, eras) %>%
    slice_min(order_by = aic_sum,
              with_ties = FALSE,
              n = params_local$MLR_number) %>%
    ungroup() %>%
    arrange(basin, gamma_slab, eras, model)
} else {
  lm_best <- lm_all_fitted_wide_eras %>%
    group_by(basin, gamma_slab, eras) %>%
    slice_min(order_by = rmse_sum,
              with_ties = FALSE,
              n = params_local$MLR_number) %>%
    ungroup() %>%
    arrange(basin, gamma_slab, eras, model)
}

5.3 RMSE tables

5.3.1 per model

lm_best %>%
  kable() %>%
  add_header_above() %>%
  kable_styling() %>%
  scroll_box(width = "100%", height = "400px")
basin gamma_slab model nr_obs rmse aic resid_max eras rmse_sum aic_sum
Atlantic (-Inf,26] cstar ~ sal + aou + nitrate + phosphate_star 124 3.2615075 657.0798 6.744848 1982-2000 –> 2001-2010 8.4129747 2026.929
Atlantic (-Inf,26] cstar ~ sal + aou + phosphate + phosphate_star 124 3.1227341 646.2966 7.531486 1982-2000 –> 2001-2010 8.3054226 2018.829
Atlantic (-Inf,26] cstar ~ sal + aou + silicate + phosphate + phosphate_star 124 3.1213666 648.1879 7.456981 1982-2000 –> 2001-2010 8.2678686 2019.610
Atlantic (-Inf,26] cstar ~ sal + nitrate + silicate 124 3.2577132 654.7911 6.550723 1982-2000 –> 2001-2010 8.4528089 2026.385
Atlantic (-Inf,26] cstar ~ sal + nitrate + silicate + phosphate_star 124 3.2563367 656.6863 6.548670 1982-2000 –> 2001-2010 8.4012564 2025.971
Atlantic (-Inf,26] cstar ~ sal + aou + nitrate + phosphate_star 92 3.3239644 494.0978 9.221507 2001-2010 –> 2011-2019 6.5854720 1151.178
Atlantic (-Inf,26] cstar ~ sal + aou + nitrate + silicate + phosphate_star 92 3.2734428 493.2797 7.972642 2001-2010 –> 2011-2019 6.5294545 1151.941
Atlantic (-Inf,26] cstar ~ sal + aou + phosphate + phosphate_star 92 3.1116309 481.9517 8.044232 2001-2010 –> 2011-2019 6.2343651 1128.248
Atlantic (-Inf,26] cstar ~ sal + aou + silicate + phosphate + phosphate_star 92 3.1114626 483.9418 8.026167 2001-2010 –> 2011-2019 6.2328291 1132.130
Atlantic (-Inf,26] cstar ~ sal + aou + silicate + phosphate_star 92 3.2941035 492.4374 8.650620 2001-2010 –> 2011-2019 6.5797101 1151.343
Atlantic (26,26.5] cstar ~ sal + aou + silicate + phosphate + phosphate_star 822 4.5565124 4839.9555 18.021194 1982-2000 –> 2001-2010 10.2635651 15005.935
Atlantic (26,26.5] cstar ~ temp + aou + nitrate + phosphate_star 822 5.1516800 5039.7817 14.408152 1982-2000 –> 2001-2010 11.3476331 15467.767
Atlantic (26,26.5] cstar ~ temp + aou + nitrate + silicate 822 5.0444837 5005.2124 15.701845 1982-2000 –> 2001-2010 11.2316144 15428.621
Atlantic (26,26.5] cstar ~ temp + aou + nitrate + silicate + phosphate_star 822 5.0437134 5006.9614 15.874667 1982-2000 –> 2001-2010 11.2171342 15425.245
Atlantic (26,26.5] cstar ~ temp + aou + silicate + phosphate + phosphate_star 822 5.1943783 5055.3514 17.528160 1982-2000 –> 2001-2010 11.3894855 15484.899
Atlantic (26,26.5] cstar ~ sal + aou + silicate + phosphate + phosphate_star 710 4.4069435 4135.0103 14.276064 2001-2010 –> 2011-2019 8.9634560 8974.966
Atlantic (26,26.5] cstar ~ temp + aou + nitrate + phosphate_star 710 4.8712630 4275.2543 14.717480 2001-2010 –> 2011-2019 10.0229430 9315.036
Atlantic (26,26.5] cstar ~ temp + aou + nitrate + silicate 710 4.7601060 4242.4760 13.435422 2001-2010 –> 2011-2019 9.8045897 9247.688
Atlantic (26,26.5] cstar ~ temp + aou + nitrate + silicate + phosphate_star 710 4.7524309 4242.1846 13.675144 2001-2010 –> 2011-2019 9.7961443 9249.146
Atlantic (26,26.5] cstar ~ temp + aou + silicate + phosphate + phosphate_star 710 4.9734585 4306.7367 15.099740 2001-2010 –> 2011-2019 10.1678368 9362.088
Atlantic (26.5,26.75] cstar ~ aou + silicate + phosphate + phosphate_star 1090 4.0963788 6179.3113 14.996817 1982-2000 –> 2001-2010 8.9294369 18121.072
Atlantic (26.5,26.75] cstar ~ sal + aou + silicate + phosphate 1090 4.0664046 6163.3011 13.681185 1982-2000 –> 2001-2010 8.9490045 18145.693
Atlantic (26.5,26.75] cstar ~ sal + aou + silicate + phosphate + phosphate_star 1090 4.0224818 6141.6260 14.317077 1982-2000 –> 2001-2010 8.8366354 18069.773
Atlantic (26.5,26.75] cstar ~ temp + aou + nitrate + silicate + phosphate_star 1090 4.1083135 6187.6535 14.147802 1982-2000 –> 2001-2010 8.9744854 18158.618
Atlantic (26.5,26.75] cstar ~ temp + aou + silicate + phosphate + phosphate_star 1090 3.9778979 6117.3287 14.003233 1982-2000 –> 2001-2010 8.7524866 18012.598
Atlantic (26.5,26.75] cstar ~ aou + silicate + phosphate + phosphate_star 868 4.2142810 4972.4768 13.355454 2001-2010 –> 2011-2019 8.3106598 11151.788
Atlantic (26.5,26.75] cstar ~ sal + aou + silicate + phosphate 868 4.2052645 4968.7587 12.686203 2001-2010 –> 2011-2019 8.2716691 11132.060
Atlantic (26.5,26.75] cstar ~ sal + aou + silicate + phosphate + phosphate_star 868 4.1600002 4951.9716 13.106978 2001-2010 –> 2011-2019 8.1824820 11093.598
Atlantic (26.5,26.75] cstar ~ temp + aou + nitrate + silicate + phosphate_star 868 4.1770474 4959.0709 12.912416 2001-2010 –> 2011-2019 8.2853609 11146.724
Atlantic (26.5,26.75] cstar ~ temp + aou + silicate + phosphate + phosphate_star 868 4.1649044 4954.0169 12.389670 2001-2010 –> 2011-2019 8.1428023 11071.346
Atlantic (26.75,27] cstar ~ aou + silicate + phosphate + phosphate_star 1822 2.8892277 9048.8567 13.895402 1982-2000 –> 2001-2010 6.3103047 26676.002
Atlantic (26.75,27] cstar ~ sal + aou + silicate + phosphate + phosphate_star 1822 2.8430134 8992.0985 13.316922 1982-2000 –> 2001-2010 6.2561891 26605.866
Atlantic (26.75,27] cstar ~ temp + aou + nitrate + silicate + phosphate_star 1822 2.9795269 9163.0020 16.760421 1982-2000 –> 2001-2010 6.4619297 26910.298
Atlantic (26.75,27] cstar ~ temp + aou + silicate + phosphate 1822 2.9705911 9150.0569 14.379929 1982-2000 –> 2001-2010 6.4466780 26883.281
Atlantic (26.75,27] cstar ~ temp + aou + silicate + phosphate + phosphate_star 1822 2.8867576 9047.7401 16.059596 1982-2000 –> 2001-2010 6.2418828 26547.434
Atlantic (26.75,27] cstar ~ aou + silicate + phosphate + phosphate_star 1654 3.2220990 8576.3178 26.569855 2001-2010 –> 2011-2019 6.1113266 17625.175
Atlantic (26.75,27] cstar ~ sal + aou + silicate + phosphate 1654 3.2198641 8574.0226 23.817368 2001-2010 –> 2011-2019 6.2399648 17784.312
Atlantic (26.75,27] cstar ~ sal + aou + silicate + phosphate + phosphate_star 1654 3.1585755 8512.4493 25.201992 2001-2010 –> 2011-2019 6.0015889 17504.548
Atlantic (26.75,27] cstar ~ temp + aou + nitrate + silicate + phosphate_star 1654 3.2872719 8644.5606 23.091359 2001-2010 –> 2011-2019 6.2667988 17807.563
Atlantic (26.75,27] cstar ~ temp + aou + silicate + phosphate + phosphate_star 1654 2.9265633 8260.0743 21.532652 2001-2010 –> 2011-2019 5.8133209 17307.814
Atlantic (27,27.25] cstar ~ sal + aou + nitrate + silicate + phosphate_star 1552 2.5868034 7368.4980 10.847592 1982-2000 –> 2001-2010 5.7132922 21594.346
Atlantic (27,27.25] cstar ~ sal + aou + silicate + phosphate 1552 2.4258421 7167.0840 10.346353 1982-2000 –> 2001-2010 5.2266026 20779.883
Atlantic (27,27.25] cstar ~ sal + aou + silicate + phosphate + phosphate_star 1552 2.4008307 7136.9143 10.810762 1982-2000 –> 2001-2010 5.1309290 20609.790
Atlantic (27,27.25] cstar ~ temp + aou + nitrate + silicate + phosphate_star 1552 2.5198693 7287.1238 14.581964 1982-2000 –> 2001-2010 5.3279223 20916.366
Atlantic (27,27.25] cstar ~ temp + aou + silicate + phosphate + phosphate_star 1552 2.7203651 7524.7632 14.715048 1982-2000 –> 2001-2010 5.7896235 21648.003
Atlantic (27,27.25] cstar ~ sal + aou + nitrate + silicate + phosphate_star 1455 2.7785376 7116.9121 12.538430 2001-2010 –> 2011-2019 5.3653410 14485.410
Atlantic (27,27.25] cstar ~ sal + aou + silicate + phosphate 1455 2.7801169 7116.5657 14.223889 2001-2010 –> 2011-2019 5.2059590 14283.650
Atlantic (27,27.25] cstar ~ sal + aou + silicate + phosphate + phosphate_star 1455 2.7798233 7118.2584 14.302337 2001-2010 –> 2011-2019 5.1806540 14255.173
Atlantic (27,27.25] cstar ~ sal + aou + silicate + phosphate_star 1455 2.8458939 7184.6138 15.576280 2001-2010 –> 2011-2019 5.4648033 14589.400
Atlantic (27,27.25] cstar ~ temp + aou + nitrate + silicate + phosphate_star 1455 2.9675779 7308.4522 19.540078 2001-2010 –> 2011-2019 5.4874471 14595.576
Atlantic (27.25,27.5] cstar ~ sal + aou + nitrate + silicate 1572 2.7954446 7705.1469 14.341594 1982-2000 –> 2001-2010 6.0809825 23639.241
Atlantic (27.25,27.5] cstar ~ sal + aou + nitrate + silicate + phosphate_star 1572 2.7198300 7620.9329 14.115124 1982-2000 –> 2001-2010 5.9510353 23455.242
Atlantic (27.25,27.5] cstar ~ sal + aou + silicate + phosphate + phosphate_star 1572 2.9727185 7900.4580 22.454907 1982-2000 –> 2001-2010 5.8843731 23099.135
Atlantic (27.25,27.5] cstar ~ temp + aou + nitrate + silicate 1572 2.6780366 7570.2466 11.886778 1982-2000 –> 2001-2010 5.3059577 22141.090
Atlantic (27.25,27.5] cstar ~ temp + aou + nitrate + silicate + phosphate_star 1572 2.5274618 7390.3085 16.182826 1982-2000 –> 2001-2010 5.1544840 21961.063
Atlantic (27.25,27.5] cstar ~ aou + nitrate + silicate + phosphate_star 1388 3.2398790 7214.2613 21.420038 2001-2010 –> 2011-2019 6.2498838 15151.909
Atlantic (27.25,27.5] cstar ~ sal + aou + nitrate + silicate 1388 3.1947000 7175.2784 16.113960 2001-2010 –> 2011-2019 5.9901445 14880.425
Atlantic (27.25,27.5] cstar ~ sal + aou + nitrate + silicate + phosphate_star 1388 3.0311596 7031.4054 14.190786 2001-2010 –> 2011-2019 5.7509896 14652.338
Atlantic (27.25,27.5] cstar ~ temp + aou + nitrate + silicate 1388 3.3421933 7300.5706 11.982809 2001-2010 –> 2011-2019 6.0202299 14870.817
Atlantic (27.25,27.5] cstar ~ temp + aou + nitrate + silicate + phosphate_star 1388 3.0508656 7049.3942 14.188674 2001-2010 –> 2011-2019 5.5783275 14439.703
Atlantic (27.5,27.75] cstar ~ sal + aou + phosphate 2162 2.9719746 10855.3060 14.808840 1982-2000 –> 2001-2010 5.9360653 30678.870
Atlantic (27.5,27.75] cstar ~ sal + aou + phosphate + phosphate_star 2162 2.9557048 10833.5695 15.007127 1982-2000 –> 2001-2010 5.7667488 30239.896
Atlantic (27.5,27.75] cstar ~ sal + aou + silicate + phosphate 2162 2.6744184 10401.1470 15.025557 1982-2000 –> 2001-2010 5.5571004 30006.480
Atlantic (27.5,27.75] cstar ~ sal + aou + silicate + phosphate + phosphate_star 2162 2.6209321 10315.7940 15.936130 1982-2000 –> 2001-2010 5.3132883 29382.976
Atlantic (27.5,27.75] cstar ~ temp + aou + nitrate + silicate + phosphate_star 2162 3.2690284 11271.2371 16.146506 1982-2000 –> 2001-2010 6.2343768 31102.156
Atlantic (27.5,27.75] cstar ~ sal + aou + nitrate + silicate 1937 3.4178724 10270.1846 17.732251 2001-2010 –> 2011-2019 6.4319272 21188.285
Atlantic (27.5,27.75] cstar ~ sal + aou + nitrate + silicate + phosphate_star 1937 3.3829074 10232.3493 15.984540 2001-2010 –> 2011-2019 6.3934636 21147.427
Atlantic (27.5,27.75] cstar ~ sal + aou + phosphate + phosphate_star 1937 3.4824823 10342.7333 15.860193 2001-2010 –> 2011-2019 6.4381871 21176.303
Atlantic (27.5,27.75] cstar ~ sal + aou + silicate + phosphate 1937 3.0214721 9792.6207 16.830331 2001-2010 –> 2011-2019 5.6958904 20193.768
Atlantic (27.5,27.75] cstar ~ sal + aou + silicate + phosphate + phosphate_star 1937 3.0134444 9784.3143 16.708738 2001-2010 –> 2011-2019 5.6343765 20100.108
Atlantic (27.75,27.85] cstar ~ sal + aou + nitrate + silicate 785 2.0784547 3388.3842 13.393032 1982-2000 –> 2001-2010 4.3376754 9610.789
Atlantic (27.75,27.85] cstar ~ sal + aou + nitrate + silicate + phosphate_star 785 2.0234457 3348.2724 14.294729 1982-2000 –> 2001-2010 4.2388889 9518.279
Atlantic (27.75,27.85] cstar ~ sal + aou + phosphate + phosphate_star 785 2.1719254 3457.4476 12.529922 1982-2000 –> 2001-2010 4.1517166 9312.813
Atlantic (27.75,27.85] cstar ~ sal + aou + silicate + phosphate 785 1.9124483 3257.6968 12.361213 1982-2000 –> 2001-2010 3.9856881 9241.279
Atlantic (27.75,27.85] cstar ~ sal + aou + silicate + phosphate + phosphate_star 785 1.7409273 3112.1696 12.951823 1982-2000 –> 2001-2010 3.6277818 8835.872
Atlantic (27.75,27.85] cstar ~ sal + aou + nitrate + silicate 694 2.1648813 3053.5300 12.588858 2001-2010 –> 2011-2019 4.2433360 6441.914
Atlantic (27.75,27.85] cstar ~ sal + aou + nitrate + silicate + phosphate_star 694 2.1524624 3047.5448 12.955422 2001-2010 –> 2011-2019 4.1759082 6395.817
Atlantic (27.75,27.85] cstar ~ sal + aou + phosphate + phosphate_star 694 2.5183116 3263.4278 11.886566 2001-2010 –> 2011-2019 4.6902371 6720.875
Atlantic (27.75,27.85] cstar ~ sal + aou + silicate + phosphate 694 2.0164884 2954.9710 11.662886 2001-2010 –> 2011-2019 3.9289367 6212.668
Atlantic (27.75,27.85] cstar ~ sal + aou + silicate + phosphate + phosphate_star 694 1.9155470 2885.6911 12.025857 2001-2010 –> 2011-2019 3.6564743 5997.861
Atlantic (27.85,27.95] cstar ~ aou + silicate + phosphate + phosphate_star 750 3.3545533 3955.8857 33.678139 1982-2000 –> 2001-2010 6.3223158 11021.871
Atlantic (27.85,27.95] cstar ~ sal + aou + phosphate + phosphate_star 750 3.3452324 3951.7120 28.827922 1982-2000 –> 2001-2010 6.1596094 10868.366
Atlantic (27.85,27.95] cstar ~ sal + aou + silicate + phosphate + phosphate_star 750 3.3314274 3947.5091 26.554649 1982-2000 –> 2001-2010 6.1457685 10866.127
Atlantic (27.85,27.95] cstar ~ temp + aou + phosphate + phosphate_star 750 3.0000941 3788.3733 21.479747 1982-2000 –> 2001-2010 5.9997323 10884.422
Atlantic (27.85,27.95] cstar ~ temp + aou + silicate + phosphate + phosphate_star 750 2.9873236 3783.9746 21.513521 1982-2000 –> 2001-2010 5.9420944 10839.615
Atlantic (27.85,27.95] cstar ~ aou + silicate + phosphate + phosphate_star 731 3.7998786 4038.2130 23.414136 2001-2010 –> 2011-2019 7.1544319 7994.099
Atlantic (27.85,27.95] cstar ~ sal + aou + phosphate + phosphate_star 731 3.4386336 3892.1666 30.630629 2001-2010 –> 2011-2019 6.7838660 7843.879
Atlantic (27.85,27.95] cstar ~ sal + aou + silicate + phosphate + phosphate_star 731 3.3620842 3861.2524 29.398203 2001-2010 –> 2011-2019 6.6935116 7808.762
Atlantic (27.85,27.95] cstar ~ temp + aou + phosphate + phosphate_star 731 3.7219690 4007.9258 22.631514 2001-2010 –> 2011-2019 6.7220632 7796.299
Atlantic (27.85,27.95] cstar ~ temp + aou + silicate + phosphate + phosphate_star 731 3.6935819 3998.7325 23.285560 2001-2010 –> 2011-2019 6.6809055 7782.707
Atlantic (27.95,28.05] cstar ~ sal + aou + silicate + phosphate + phosphate_star 924 4.6980424 5495.3240 25.160690 1982-2000 –> 2001-2010 9.4526472 16039.716
Atlantic (27.95,28.05] cstar ~ temp + aou + nitrate + phosphate_star 924 4.2013468 5286.8271 22.206275 1982-2000 –> 2001-2010 8.2709407 15279.123
Atlantic (27.95,28.05] cstar ~ temp + aou + nitrate + silicate + phosphate_star 924 4.0064687 5201.0565 25.022177 1982-2000 –> 2001-2010 7.6043480 14759.722
Atlantic (27.95,28.05] cstar ~ temp + aou + silicate + phosphate + phosphate_star 924 4.6596686 5480.1675 21.661342 1982-2000 –> 2001-2010 9.5112810 16095.978
Atlantic (27.95,28.05] cstar ~ temp + aou + silicate + phosphate_star 924 4.7226299 5502.9705 24.237775 1982-2000 –> 2001-2010 9.5945376 16131.542
Atlantic (27.95,28.05] cstar ~ sal + aou + silicate + phosphate + phosphate_star 854 4.3349976 4942.7066 24.370650 2001-2010 –> 2011-2019 9.0330400 10438.031
Atlantic (27.95,28.05] cstar ~ temp + aou + nitrate + phosphate_star 854 3.8616953 4743.2365 22.414073 2001-2010 –> 2011-2019 8.0630421 10030.064
Atlantic (27.95,28.05] cstar ~ temp + aou + nitrate + silicate + phosphate_star 854 3.4985961 4576.5809 26.627224 2001-2010 –> 2011-2019 7.5050648 9777.637
Atlantic (27.95,28.05] cstar ~ temp + aou + silicate + phosphate + phosphate_star 854 4.4438079 4985.0489 22.928085 2001-2010 –> 2011-2019 9.1034765 10465.216
Atlantic (27.95,28.05] cstar ~ temp + aou + silicate + phosphate_star 854 4.4443554 4983.2593 23.217101 2001-2010 –> 2011-2019 9.1669854 10486.230
Atlantic (28.05,28.1] cstar ~ aou + silicate + phosphate + phosphate_star 625 1.2248218 2039.1673 10.101485 1982-2000 –> 2001-2010 2.4204436 5680.926
Atlantic (28.05,28.1] cstar ~ sal + aou + phosphate + phosphate_star 625 1.1139452 1920.5581 7.148025 1982-2000 –> 2001-2010 2.2622163 5470.507
Atlantic (28.05,28.1] cstar ~ sal + aou + silicate + phosphate + phosphate_star 625 1.0803183 1884.2428 6.138916 1982-2000 –> 2001-2010 2.2282632 5435.546
Atlantic (28.05,28.1] cstar ~ temp + aou + phosphate + phosphate_star 625 1.1702602 1982.2058 10.430649 1982-2000 –> 2001-2010 2.3539376 5601.153
Atlantic (28.05,28.1] cstar ~ temp + aou + silicate + phosphate + phosphate_star 625 1.1158650 1924.7105 11.408976 1982-2000 –> 2001-2010 2.2121652 5371.429
Atlantic (28.05,28.1] cstar ~ sal + aou + nitrate + silicate + phosphate_star 553 1.2938561 1868.2815 9.004752 2001-2010 –> 2011-2019 2.4795021 3868.814
Atlantic (28.05,28.1] cstar ~ sal + aou + phosphate + phosphate_star 553 1.2237224 1804.6445 10.666527 2001-2010 –> 2011-2019 2.3376676 3725.203
Atlantic (28.05,28.1] cstar ~ sal + aou + silicate + phosphate + phosphate_star 553 1.1877437 1773.6393 9.478772 2001-2010 –> 2011-2019 2.2680620 3657.882
Atlantic (28.05,28.1] cstar ~ temp + aou + phosphate + phosphate_star 553 1.2498655 1828.0238 14.596752 2001-2010 –> 2011-2019 2.4201257 3810.230
Atlantic (28.05,28.1] cstar ~ temp + aou + silicate + phosphate + phosphate_star 553 1.2040330 1788.7045 15.347053 2001-2010 –> 2011-2019 2.3198980 3713.415
Atlantic (28.1,28.15] cstar ~ aou + silicate + phosphate + phosphate_star 730 0.9168587 1956.9195 11.412156 1982-2000 –> 2001-2010 1.7984757 5496.062
Atlantic (28.1,28.15] cstar ~ sal + aou + phosphate + phosphate_star 730 0.8449045 1837.5940 7.258465 1982-2000 –> 2001-2010 1.7041519 5306.625
Atlantic (28.1,28.15] cstar ~ sal + aou + silicate + phosphate + phosphate_star 730 0.8302277 1814.0096 7.117191 1982-2000 –> 2001-2010 1.6520987 5163.717
Atlantic (28.1,28.15] cstar ~ temp + aou + silicate + phosphate 730 0.9286604 1975.5925 11.497046 1982-2000 –> 2001-2010 1.8214229 5549.007
Atlantic (28.1,28.15] cstar ~ temp + aou + silicate + phosphate + phosphate_star 730 0.8374219 1826.6064 11.501958 1982-2000 –> 2001-2010 1.6439400 5124.872
Atlantic (28.1,28.15] cstar ~ sal + aou + nitrate + silicate + phosphate_star 634 1.0154724 1832.6829 8.297395 2001-2010 –> 2011-2019 1.9248481 3779.637
Atlantic (28.1,28.15] cstar ~ sal + aou + phosphate + phosphate_star 634 0.9270373 1715.1485 7.388159 2001-2010 –> 2011-2019 1.7719418 3552.743
Atlantic (28.1,28.15] cstar ~ sal + aou + silicate + phosphate + phosphate_star 634 0.9259444 1715.6528 7.387751 2001-2010 –> 2011-2019 1.7561721 3529.662
Atlantic (28.1,28.15] cstar ~ temp + aou + phosphate + phosphate_star 634 0.9990473 1810.0055 12.519106 2001-2010 –> 2011-2019 1.9124313 3761.381
Atlantic (28.1,28.15] cstar ~ temp + aou + silicate + phosphate + phosphate_star 634 0.9191637 1706.3330 12.985587 2001-2010 –> 2011-2019 1.7565856 3532.939
Atlantic (28.15,28.2] cstar ~ sal + aou + nitrate + phosphate_star 1187 0.6279269 2275.8630 2.949173 1982-2000 –> 2001-2010 1.2363706 6586.636
Atlantic (28.15,28.2] cstar ~ sal + aou + nitrate + silicate + phosphate_star 1187 0.5786561 2083.8705 2.322577 1982-2000 –> 2001-2010 1.1765290 6314.936
Atlantic (28.15,28.2] cstar ~ temp + aou + nitrate + phosphate_star 1187 0.6233521 2258.5037 2.403297 1982-2000 –> 2001-2010 1.2593614 6775.844
Atlantic (28.15,28.2] cstar ~ temp + aou + nitrate + silicate 1187 0.5948620 2147.4433 2.237198 1982-2000 –> 2001-2010 1.2213490 6594.456
Atlantic (28.15,28.2] cstar ~ temp + aou + nitrate + silicate + phosphate_star 1187 0.5834551 2103.4780 2.272568 1982-2000 –> 2001-2010 1.2097995 6551.429
Atlantic (28.15,28.2] cstar ~ sal + aou + nitrate + phosphate_star 1065 0.7555426 2437.2593 4.997412 2001-2010 –> 2011-2019 1.3834695 4713.122
Atlantic (28.15,28.2] cstar ~ sal + aou + nitrate + silicate + phosphate_star 1065 0.7483863 2418.9883 5.639219 2001-2010 –> 2011-2019 1.3270423 4502.859
Atlantic (28.15,28.2] cstar ~ temp + aou + nitrate + phosphate_star 1065 0.8589612 2710.5120 9.016889 2001-2010 –> 2011-2019 1.4823133 4969.016
Atlantic (28.15,28.2] cstar ~ temp + aou + nitrate + silicate 1065 0.8519989 2693.1769 9.669208 2001-2010 –> 2011-2019 1.4468609 4840.620
Atlantic (28.15,28.2] cstar ~ temp + aou + nitrate + silicate + phosphate_star 1065 0.8517471 2694.5474 9.554421 2001-2010 –> 2011-2019 1.4352023 4798.025
Atlantic (28.2, Inf] cstar ~ sal + aou + nitrate 2075 0.3796799 1879.6236 2.015903 1982-2000 –> 2001-2010 0.7417682 5048.897
Atlantic (28.2, Inf] cstar ~ sal + aou + nitrate + phosphate_star 2075 0.3742434 1821.7718 1.991831 1982-2000 –> 2001-2010 0.7330349 4921.353
Atlantic (28.2, Inf] cstar ~ sal + aou + nitrate + silicate 2075 0.3791162 1875.4575 2.014214 1982-2000 –> 2001-2010 0.7399747 5020.065
Atlantic (28.2, Inf] cstar ~ sal + aou + nitrate + silicate + phosphate_star 2075 0.3672065 1744.9961 2.077596 1982-2000 –> 2001-2010 0.7241868 4806.911
Atlantic (28.2, Inf] cstar ~ temp + aou + nitrate + silicate + phosphate_star 2075 0.5379025 3329.2717 3.121041 1982-2000 –> 2001-2010 1.0376970 9028.802
Atlantic (28.2, Inf] cstar ~ sal + aou + nitrate 1967 0.4372635 2337.8235 2.439187 2001-2010 –> 2011-2019 0.8169434 4217.447
Atlantic (28.2, Inf] cstar ~ sal + aou + nitrate + phosphate_star 1967 0.4203312 2184.4576 2.396465 2001-2010 –> 2011-2019 0.7945745 4006.229
Atlantic (28.2, Inf] cstar ~ sal + aou + nitrate + silicate 1967 0.4310142 2283.1938 2.392120 2001-2010 –> 2011-2019 0.8101304 4158.651
Atlantic (28.2, Inf] cstar ~ sal + aou + nitrate + silicate + phosphate_star 1967 0.4120641 2108.3132 2.647270 2001-2010 –> 2011-2019 0.7792706 3853.309
Atlantic (28.2, Inf] cstar ~ temp + aou + nitrate + silicate + phosphate_star 1967 0.7080347 4237.8427 8.997608 2001-2010 –> 2011-2019 1.2459372 7567.114
Indo-Pacific (-Inf,26] cstar ~ sal + aou + phosphate + phosphate_star 4077 6.8428599 27263.8446 30.476653 1982-2000 –> 2001-2010 14.6650404 80109.553
Indo-Pacific (-Inf,26] cstar ~ sal + aou + silicate + phosphate + phosphate_star 4077 6.8078550 27224.0254 30.053282 1982-2000 –> 2001-2010 14.5931044 79999.800
Indo-Pacific (-Inf,26] cstar ~ temp + aou + nitrate + silicate + phosphate_star 4077 7.7159477 28245.0059 32.151612 1982-2000 –> 2001-2010 16.4075686 82694.735
Indo-Pacific (-Inf,26] cstar ~ temp + aou + silicate + phosphate + phosphate_star 4077 7.8361951 28371.1000 29.711490 1982-2000 –> 2001-2010 16.5603622 82877.640
Indo-Pacific (-Inf,26] cstar ~ temp + silicate + phosphate + phosphate_star 4077 7.9166124 28452.3522 29.041725 1982-2000 –> 2001-2010 16.7718230 83183.510
Indo-Pacific (-Inf,26] cstar ~ sal + aou + phosphate + phosphate_star 3620 6.6650059 24018.4599 26.444799 2001-2010 –> 2011-2019 13.5078659 51282.304
Indo-Pacific (-Inf,26] cstar ~ sal + aou + silicate + phosphate + phosphate_star 3620 6.6163104 23967.3691 25.792991 2001-2010 –> 2011-2019 13.4241653 51191.395
Indo-Pacific (-Inf,26] cstar ~ temp + aou + nitrate + silicate + phosphate_star 3620 7.6893503 25055.5297 27.389652 2001-2010 –> 2011-2019 15.4052980 53300.536
Indo-Pacific (-Inf,26] cstar ~ temp + aou + silicate + phosphate + phosphate_star 3620 7.7183993 25082.8296 27.030017 2001-2010 –> 2011-2019 15.5545944 53453.930
Indo-Pacific (-Inf,26] cstar ~ temp + silicate + phosphate + phosphate_star 3620 7.8401647 25194.1562 26.057010 2001-2010 –> 2011-2019 15.7567771 53646.508
Indo-Pacific (26,26.5] cstar ~ aou + silicate + phosphate + phosphate_star 4220 5.3263709 26105.1771 43.904943 1982-2000 –> 2001-2010 11.0442349 77609.553
Indo-Pacific (26,26.5] cstar ~ sal + aou + silicate + phosphate + phosphate_star 4220 4.9959668 25566.6865 48.187075 1982-2000 –> 2001-2010 10.3844491 76107.026
Indo-Pacific (26,26.5] cstar ~ temp + aou + nitrate + silicate + phosphate_star 4220 5.1799142 25871.8561 50.518458 1982-2000 –> 2001-2010 10.7039017 76816.579
Indo-Pacific (26,26.5] cstar ~ temp + aou + silicate + phosphate 4220 5.3260159 26104.6145 41.418559 1982-2000 –> 2001-2010 11.0205249 77542.349
Indo-Pacific (26,26.5] cstar ~ temp + aou + silicate + phosphate + phosphate_star 4220 5.3161660 26090.9912 42.819641 1982-2000 –> 2001-2010 11.0106228 77530.577
Indo-Pacific (26,26.5] cstar ~ aou + silicate + phosphate + phosphate_star 3794 5.3733764 23537.7972 45.536348 2001-2010 –> 2011-2019 10.6997473 49642.974
Indo-Pacific (26,26.5] cstar ~ sal + aou + silicate + phosphate + phosphate_star 3794 5.0586719 23081.8425 45.933471 2001-2010 –> 2011-2019 10.0546387 48648.529
Indo-Pacific (26,26.5] cstar ~ temp + aou + nitrate + silicate + phosphate_star 3794 5.1967576 23286.1943 51.404996 2001-2010 –> 2011-2019 10.3766718 49158.050
Indo-Pacific (26,26.5] cstar ~ temp + aou + silicate + phosphate 3794 5.3626602 23522.6493 44.447825 2001-2010 –> 2011-2019 10.6886761 49627.264
Indo-Pacific (26,26.5] cstar ~ temp + aou + silicate + phosphate + phosphate_star 3794 5.3595329 23520.2230 44.892901 2001-2010 –> 2011-2019 10.6756989 49611.214
Indo-Pacific (26.5,26.75] cstar ~ aou + silicate + phosphate + phosphate_star 3488 4.3515566 20168.9577 23.877070 1982-2000 –> 2001-2010 9.0978234 59753.802
Indo-Pacific (26.5,26.75] cstar ~ sal + aou + silicate + phosphate + phosphate_star 3488 4.2503108 20006.7322 21.960404 1982-2000 –> 2001-2010 8.8376086 59140.618
Indo-Pacific (26.5,26.75] cstar ~ temp + aou + nitrate + silicate + phosphate_star 3488 4.3114441 20106.3550 30.460588 1982-2000 –> 2001-2010 9.1012744 59814.679
Indo-Pacific (26.5,26.75] cstar ~ temp + aou + silicate + phosphate + phosphate_star 3488 4.2742249 20045.8722 21.963387 1982-2000 –> 2001-2010 8.9550947 59448.242
Indo-Pacific (26.5,26.75] cstar ~ temp + nitrate + silicate + phosphate_star 3488 4.3117148 20104.7929 30.146256 1982-2000 –> 2001-2010 9.1626404 59979.638
Indo-Pacific (26.5,26.75] cstar ~ aou + silicate + phosphate + phosphate_star 3143 4.7279420 18696.6859 25.375135 2001-2010 –> 2011-2019 9.0794986 38865.644
Indo-Pacific (26.5,26.75] cstar ~ sal + aou + silicate + phosphate + phosphate_star 3143 4.6034133 18530.9002 26.234361 2001-2010 –> 2011-2019 8.8537241 38537.632
Indo-Pacific (26.5,26.75] cstar ~ temp + aou + nitrate + silicate + phosphate_star 3143 4.6625834 18611.1826 33.294084 2001-2010 –> 2011-2019 8.9740275 38717.538
Indo-Pacific (26.5,26.75] cstar ~ temp + aou + silicate + phosphate + phosphate_star 3143 4.6087871 18538.2338 24.409574 2001-2010 –> 2011-2019 8.8830120 38584.106
Indo-Pacific (26.5,26.75] cstar ~ temp + nitrate + silicate + phosphate_star 3143 4.6743102 18624.9726 35.801289 2001-2010 –> 2011-2019 8.9860250 38729.766
Indo-Pacific (26.75,27] cstar ~ aou + silicate + phosphate + phosphate_star 4075 4.7061189 24199.5870 19.637534 1982-2000 –> 2001-2010 9.4295372 71297.521
Indo-Pacific (26.75,27] cstar ~ sal + aou + phosphate + phosphate_star 4075 4.4824000 23802.6417 22.715888 1982-2000 –> 2001-2010 8.9378918 69975.244
Indo-Pacific (26.75,27] cstar ~ sal + aou + silicate + phosphate + phosphate_star 4075 4.4686641 23779.6285 21.907678 1982-2000 –> 2001-2010 8.9073277 69894.267
Indo-Pacific (26.75,27] cstar ~ temp + aou + phosphate + phosphate_star 4075 4.3998975 23651.2363 22.224691 1982-2000 –> 2001-2010 8.8581963 69833.818
Indo-Pacific (26.75,27] cstar ~ temp + aou + silicate + phosphate + phosphate_star 4075 4.3698710 23597.4269 20.901397 1982-2000 –> 2001-2010 8.7981063 69674.793
Indo-Pacific (26.75,27] cstar ~ aou + silicate + phosphate + phosphate_star 3755 5.1488424 22975.4054 21.838728 2001-2010 –> 2011-2019 9.8549612 47174.992
Indo-Pacific (26.75,27] cstar ~ sal + aou + phosphate + phosphate_star 3755 4.9333639 22654.3468 23.814311 2001-2010 –> 2011-2019 9.4157639 46456.988
Indo-Pacific (26.75,27] cstar ~ sal + aou + silicate + phosphate + phosphate_star 3755 4.9243970 22642.6842 23.050839 2001-2010 –> 2011-2019 9.3930612 46422.313
Indo-Pacific (26.75,27] cstar ~ temp + aou + phosphate + phosphate_star 3755 4.8303776 22495.9124 20.897629 2001-2010 –> 2011-2019 9.2302751 46147.149
Indo-Pacific (26.75,27] cstar ~ temp + aou + silicate + phosphate + phosphate_star 3755 4.8092795 22465.0384 19.911142 2001-2010 –> 2011-2019 9.1791504 46062.465
Indo-Pacific (27,27.25] cstar ~ sal + aou + silicate + phosphate + phosphate_star 5035 4.5504270 29560.9872 46.044668 1982-2000 –> 2001-2010 8.9222622 83660.328
Indo-Pacific (27,27.25] cstar ~ temp + aou + nitrate + silicate + phosphate_star 5035 4.2686966 28917.3880 56.817049 1982-2000 –> 2001-2010 8.4991660 82402.456
Indo-Pacific (27,27.25] cstar ~ temp + aou + phosphate + phosphate_star 5035 4.5608034 29581.9239 48.934144 1982-2000 –> 2001-2010 9.0001897 83965.813
Indo-Pacific (27,27.25] cstar ~ temp + aou + silicate + phosphate + phosphate_star 5035 4.2410652 28851.9928 34.437415 1982-2000 –> 2001-2010 8.4216004 82115.165
Indo-Pacific (27,27.25] cstar ~ temp + nitrate + silicate + phosphate_star 5035 4.5858348 29637.0406 78.292868 1982-2000 –> 2001-2010 8.9489951 83697.263
Indo-Pacific (27,27.25] cstar ~ aou + silicate + phosphate + phosphate_star 4394 5.3237703 27176.7652 31.926570 2001-2010 –> 2011-2019 9.9309084 56860.477
Indo-Pacific (27,27.25] cstar ~ sal + aou + silicate + phosphate + phosphate_star 4394 5.2829317 27111.0926 34.134451 2001-2010 –> 2011-2019 9.8333587 56672.080
Indo-Pacific (27,27.25] cstar ~ temp + aou + nitrate + silicate + phosphate_star 4394 5.1339127 26859.6405 37.191688 2001-2010 –> 2011-2019 9.4026093 55777.028
Indo-Pacific (27,27.25] cstar ~ temp + aou + phosphate + phosphate_star 4394 5.2852844 27113.0054 40.729059 2001-2010 –> 2011-2019 9.8460879 56694.929
Indo-Pacific (27,27.25] cstar ~ temp + aou + silicate + phosphate + phosphate_star 4394 4.6890173 26063.0518 26.211339 2001-2010 –> 2011-2019 8.9300825 54915.045
Indo-Pacific (27.25,27.5] cstar ~ sal + aou + nitrate + silicate + phosphate_star 4525 3.7195506 24743.4996 32.137050 1982-2000 –> 2001-2010 7.3602789 69946.486
Indo-Pacific (27.25,27.5] cstar ~ sal + aou + silicate + phosphate + phosphate_star 4525 3.9793937 25354.6155 32.260023 1982-2000 –> 2001-2010 7.7606643 71188.925
Indo-Pacific (27.25,27.5] cstar ~ sal + aou + silicate + phosphate_star 4525 3.9932800 25384.1410 31.544624 1982-2000 –> 2001-2010 7.7745735 71216.551
Indo-Pacific (27.25,27.5] cstar ~ temp + aou + nitrate + silicate + phosphate_star 4525 3.8932218 25156.4889 32.630203 1982-2000 –> 2001-2010 7.6387007 70832.275
Indo-Pacific (27.25,27.5] cstar ~ temp + aou + silicate + phosphate + phosphate_star 4525 3.6667715 24614.1634 33.059077 1982-2000 –> 2001-2010 7.3507532 70014.005
Indo-Pacific (27.25,27.5] cstar ~ sal + aou + nitrate + silicate + phosphate_star 4007 4.1137078 22719.7721 31.039838 2001-2010 –> 2011-2019 7.8332585 47463.272
Indo-Pacific (27.25,27.5] cstar ~ sal + aou + silicate + phosphate + phosphate_star 4007 4.4221644 23299.2203 32.192748 2001-2010 –> 2011-2019 8.4015581 48653.836
Indo-Pacific (27.25,27.5] cstar ~ sal + aou + silicate + phosphate_star 4007 4.4599021 23365.3197 30.581432 2001-2010 –> 2011-2019 8.4531822 48749.461
Indo-Pacific (27.25,27.5] cstar ~ temp + aou + nitrate + silicate + phosphate_star 4007 4.3710730 23206.0917 31.013092 2001-2010 –> 2011-2019 8.2642948 48362.581
Indo-Pacific (27.25,27.5] cstar ~ temp + aou + silicate + phosphate + phosphate_star 4007 4.0072348 22509.6183 32.993931 2001-2010 –> 2011-2019 7.6740063 47123.782
Indo-Pacific (27.5,27.75] cstar ~ sal + aou + nitrate + silicate + phosphate_star 4480 3.4251650 23758.7901 23.149497 1982-2000 –> 2001-2010 6.3941340 66690.240
Indo-Pacific (27.5,27.75] cstar ~ sal + aou + silicate + phosphate + phosphate_star 4480 3.4152828 23732.9016 11.213435 1982-2000 –> 2001-2010 6.4130403 66829.536
Indo-Pacific (27.5,27.75] cstar ~ sal + aou + silicate + phosphate_star 4480 3.5313202 24030.2686 21.541236 1982-2000 –> 2001-2010 6.5466023 67224.682
Indo-Pacific (27.5,27.75] cstar ~ sal + nitrate + silicate + phosphate_star 4480 3.5590812 24100.4310 28.476354 1982-2000 –> 2001-2010 6.5924841 67397.410
Indo-Pacific (27.5,27.75] cstar ~ sal + silicate + phosphate + phosphate_star 4480 3.5801484 24153.3113 24.488002 1982-2000 –> 2001-2010 6.6101814 67431.262
Indo-Pacific (27.5,27.75] cstar ~ sal + aou + nitrate + silicate + phosphate_star 4006 4.1604953 22804.7162 26.146725 2001-2010 –> 2011-2019 7.5856603 46563.506
Indo-Pacific (27.5,27.75] cstar ~ sal + aou + silicate + phosphate + phosphate_star 4006 4.0245862 22538.6214 10.945458 2001-2010 –> 2011-2019 7.4398690 46271.523
Indo-Pacific (27.5,27.75] cstar ~ sal + aou + silicate + phosphate_star 4006 4.3179926 23100.4140 24.511363 2001-2010 –> 2011-2019 7.8493128 47130.683
Indo-Pacific (27.5,27.75] cstar ~ sal + nitrate + silicate + phosphate_star 4006 4.3433675 23147.3591 32.302340 2001-2010 –> 2011-2019 7.9024487 47247.790
Indo-Pacific (27.5,27.75] cstar ~ temp + aou + silicate + phosphate + phosphate_star 4006 4.2305828 22938.5617 18.679475 2001-2010 –> 2011-2019 7.7681793 46986.741
Indo-Pacific (27.75,27.85] cstar ~ aou + silicate + phosphate + phosphate_star 1772 2.9170149 8834.7856 21.055032 1982-2000 –> 2001-2010 5.3737515 24106.999
Indo-Pacific (27.75,27.85] cstar ~ sal + aou + silicate + phosphate + phosphate_star 1772 2.9161606 8835.7475 21.293384 1982-2000 –> 2001-2010 5.3650443 24088.882
Indo-Pacific (27.75,27.85] cstar ~ temp + aou + nitrate + silicate + phosphate_star 1772 2.9136257 8832.6655 21.486044 1982-2000 –> 2001-2010 5.3702408 24106.554
Indo-Pacific (27.75,27.85] cstar ~ temp + aou + silicate + phosphate 1772 2.9274071 8847.3891 20.650526 1982-2000 –> 2001-2010 5.3913652 24138.928
Indo-Pacific (27.75,27.85] cstar ~ temp + aou + silicate + phosphate + phosphate_star 1772 2.8363586 8737.4127 20.879844 1982-2000 –> 2001-2010 5.2797724 23975.824
Indo-Pacific (27.75,27.85] cstar ~ sal + aou + nitrate + silicate + phosphate_star 1648 3.2450479 8570.6423 29.981525 2001-2010 –> 2011-2019 6.1594031 17404.195
Indo-Pacific (27.75,27.85] cstar ~ sal + nitrate + silicate + phosphate_star 1648 3.2533312 8577.0449 28.060881 2001-2010 –> 2011-2019 6.1676885 17408.600
Indo-Pacific (27.75,27.85] cstar ~ temp + aou + nitrate + silicate + phosphate_star 1648 3.2740679 8599.9869 29.326154 2001-2010 –> 2011-2019 6.1876935 17432.652
Indo-Pacific (27.75,27.85] cstar ~ temp + aou + phosphate + phosphate_star 1648 3.2216485 8544.7894 30.662953 2001-2010 –> 2011-2019 6.1454636 17387.827
Indo-Pacific (27.75,27.85] cstar ~ temp + aou + silicate + phosphate + phosphate_star 1648 3.1700595 8493.5825 27.788882 2001-2010 –> 2011-2019 6.0064181 17230.995
Indo-Pacific (27.85,27.95] cstar ~ temp + aou + nitrate + phosphate_star 2176 2.8510566 10746.7658 26.157736 1982-2000 –> 2001-2010 5.1641296 29888.952
Indo-Pacific (27.85,27.95] cstar ~ temp + aou + nitrate + silicate 2176 2.8444030 10736.5976 25.745680 1982-2000 –> 2001-2010 5.1960116 30018.797
Indo-Pacific (27.85,27.95] cstar ~ temp + aou + nitrate + silicate + phosphate_star 2176 2.8407088 10732.9418 25.535864 1982-2000 –> 2001-2010 5.1513289 29868.137
Indo-Pacific (27.85,27.95] cstar ~ temp + nitrate + phosphate_star 2176 2.8878899 10800.6300 30.561785 1982-2000 –> 2001-2010 5.2034100 29949.777
Indo-Pacific (27.85,27.95] cstar ~ temp + nitrate + silicate + phosphate_star 2176 2.8732077 10780.4477 29.520555 1982-2000 –> 2001-2010 5.1866819 29924.104
Indo-Pacific (27.85,27.95] cstar ~ temp + aou + nitrate 2046 3.1951398 10569.6898 35.387658 2001-2010 –> 2011-2019 6.0485509 21318.048
Indo-Pacific (27.85,27.95] cstar ~ temp + aou + nitrate + phosphate_star 2046 3.1893940 10564.3247 35.529099 2001-2010 –> 2011-2019 6.0404506 21311.091
Indo-Pacific (27.85,27.95] cstar ~ temp + aou + nitrate + silicate 2046 3.1820229 10554.8566 34.980600 2001-2010 –> 2011-2019 6.0264258 21291.454
Indo-Pacific (27.85,27.95] cstar ~ temp + aou + nitrate + silicate + phosphate_star 2046 3.1770142 10550.4104 35.124053 2001-2010 –> 2011-2019 6.0177230 21283.352
Indo-Pacific (27.85,27.95] cstar ~ temp + aou + silicate + phosphate + phosphate_star 2046 3.1197138 10475.9338 40.168786 2001-2010 –> 2011-2019 6.0369065 21324.500
Indo-Pacific (27.95,28.05] cstar ~ aou + silicate + phosphate + phosphate_star 1910 2.2725300 8568.1593 9.137309 1982-2000 –> 2001-2010 4.3474766 24460.338
Indo-Pacific (27.95,28.05] cstar ~ sal + aou + silicate + phosphate + phosphate_star 1910 2.2277338 8494.1072 9.349733 1982-2000 –> 2001-2010 4.2751074 24289.425
Indo-Pacific (27.95,28.05] cstar ~ temp + aou + nitrate + silicate + phosphate_star 1910 2.2758565 8575.7469 8.969487 1982-2000 –> 2001-2010 4.3631957 24513.931
Indo-Pacific (27.95,28.05] cstar ~ temp + aou + silicate + phosphate 1910 2.2863589 8591.3345 9.186238 1982-2000 –> 2001-2010 4.3716998 24520.440
Indo-Pacific (27.95,28.05] cstar ~ temp + aou + silicate + phosphate + phosphate_star 1910 2.2108376 8465.0241 8.812504 1982-2000 –> 2001-2010 4.2391905 24191.366
Indo-Pacific (27.95,28.05] cstar ~ sal + aou + nitrate + phosphate_star 1759 2.4658781 8178.9895 9.983524 2001-2010 –> 2011-2019 4.7038680 16688.643
Indo-Pacific (27.95,28.05] cstar ~ sal + aou + nitrate + silicate + phosphate_star 1759 2.4583937 8170.2955 10.166360 2001-2010 –> 2011-2019 4.6771350 16648.952
Indo-Pacific (27.95,28.05] cstar ~ sal + aou + silicate + phosphate + phosphate_star 1759 2.5231094 8261.7067 10.100622 2001-2010 –> 2011-2019 4.7508432 16755.814
Indo-Pacific (27.95,28.05] cstar ~ temp + aou + phosphate + phosphate_star 1759 2.5191024 8254.1153 10.179165 2001-2010 –> 2011-2019 4.7917918 16822.543
Indo-Pacific (27.95,28.05] cstar ~ temp + aou + silicate + phosphate + phosphate_star 1759 2.4756829 8194.9501 9.928208 2001-2010 –> 2011-2019 4.6865206 16659.974
Indo-Pacific (28.05,28.1] cstar ~ sal + aou + silicate + phosphate 1321 1.9818871 5568.0943 9.523772 1982-2000 –> 2001-2010 3.7197113 16198.983
Indo-Pacific (28.05,28.1] cstar ~ sal + aou + silicate + phosphate + phosphate_star 1321 1.8869350 5440.3836 10.150907 1982-2000 –> 2001-2010 3.6017358 16001.440
Indo-Pacific (28.05,28.1] cstar ~ sal + silicate + phosphate + phosphate_star 1321 1.9824370 5568.8273 9.278758 1982-2000 –> 2001-2010 3.7375846 16253.140
Indo-Pacific (28.05,28.1] cstar ~ temp + aou + nitrate + silicate + phosphate_star 1321 1.9019277 5461.2927 10.903283 1982-2000 –> 2001-2010 3.6246876 16047.290
Indo-Pacific (28.05,28.1] cstar ~ temp + aou + silicate + phosphate + phosphate_star 1321 1.8582913 5399.9705 9.841824 1982-2000 –> 2001-2010 3.5904399 16015.241
Indo-Pacific (28.05,28.1] cstar ~ aou + silicate + phosphate + phosphate_star 1224 2.1021750 5304.3583 9.338380 2001-2010 –> 2011-2019 4.0279576 10796.582
Indo-Pacific (28.05,28.1] cstar ~ sal + aou + silicate + phosphate + phosphate_star 1224 2.0441555 5237.8441 9.052582 2001-2010 –> 2011-2019 3.9310905 10678.228
Indo-Pacific (28.05,28.1] cstar ~ temp + aou + nitrate + silicate + phosphate_star 1224 2.0855455 5286.9161 9.819478 2001-2010 –> 2011-2019 3.9874732 10748.209
Indo-Pacific (28.05,28.1] cstar ~ temp + aou + silicate + phosphate 1224 2.1143730 5318.5219 9.470052 2001-2010 –> 2011-2019 4.0489454 10822.777
Indo-Pacific (28.05,28.1] cstar ~ temp + aou + silicate + phosphate + phosphate_star 1224 1.9950662 5178.3393 8.422468 2001-2010 –> 2011-2019 3.8533574 10578.310
Indo-Pacific (28.1, Inf] cstar ~ sal + aou + silicate + phosphate 11307 1.4222626 40065.6345 12.448422 1982-2000 –> 2001-2010 2.7125094 111815.504
Indo-Pacific (28.1, Inf] cstar ~ sal + aou + silicate + phosphate + phosphate_star 11307 1.3241226 38450.7580 14.922637 1982-2000 –> 2001-2010 2.5124113 106674.423
Indo-Pacific (28.1, Inf] cstar ~ temp + aou + nitrate + silicate + phosphate_star 11307 1.3584530 39029.5967 13.107193 1982-2000 –> 2001-2010 2.5013676 105584.614
Indo-Pacific (28.1, Inf] cstar ~ temp + aou + silicate + phosphate + phosphate_star 11307 1.3760657 39320.9097 15.711661 1982-2000 –> 2001-2010 2.6336117 109972.506
Indo-Pacific (28.1, Inf] cstar ~ temp + nitrate + silicate + phosphate_star 11307 1.5492538 41999.6842 16.692830 1982-2000 –> 2001-2010 2.8960757 115588.852
Indo-Pacific (28.1, Inf] cstar ~ sal + aou + nitrate + silicate + phosphate_star 10029 1.6385108 38379.4638 9.314138 2001-2010 –> 2011-2019 3.1508314 79835.515
Indo-Pacific (28.1, Inf] cstar ~ sal + aou + silicate + phosphate 10029 1.5753489 37588.9638 11.239773 2001-2010 –> 2011-2019 2.9976115 77654.598
Indo-Pacific (28.1, Inf] cstar ~ sal + aou + silicate + phosphate + phosphate_star 10029 1.4949035 36539.6218 13.624735 2001-2010 –> 2011-2019 2.8190261 74990.380
Indo-Pacific (28.1, Inf] cstar ~ temp + aou + nitrate + silicate + phosphate_star 10029 1.5777186 37621.1137 12.446204 2001-2010 –> 2011-2019 2.9361716 76650.710
Indo-Pacific (28.1, Inf] cstar ~ temp + aou + silicate + phosphate + phosphate_star 10029 1.5527536 37301.1885 14.748217 2001-2010 –> 2011-2019 2.9288194 76622.098

5.3.2 per fitting unit

lm_best %>%
  group_by(basin, gamma_slab, eras) %>% 
  summarise(rmse_sum_mean = mean(rmse_sum),
            ais_sum_mean = mean(aic_sum)) %>% 
  ungroup() %>% 
  kable() %>%
  add_header_above() %>%
  kable_styling() %>%
  scroll_box(width = "100%", height = "400px")
basin gamma_slab eras rmse_sum_mean ais_sum_mean
Atlantic (-Inf,26] 1982-2000 –> 2001-2010 8.3680662 2023.545
Atlantic (-Inf,26] 2001-2010 –> 2011-2019 6.4323661 1142.968
Atlantic (26,26.5] 1982-2000 –> 2001-2010 11.0898864 15362.493
Atlantic (26,26.5] 2001-2010 –> 2011-2019 9.7509940 9229.785
Atlantic (26.5,26.75] 1982-2000 –> 2001-2010 8.8884098 18101.551
Atlantic (26.5,26.75] 2001-2010 –> 2011-2019 8.2385948 11119.103
Atlantic (26.75,27] 1982-2000 –> 2001-2010 6.3433969 26724.576
Atlantic (26.75,27] 2001-2010 –> 2011-2019 6.0866000 17605.882
Atlantic (27,27.25] 1982-2000 –> 2001-2010 5.4376739 21109.678
Atlantic (27,27.25] 2001-2010 –> 2011-2019 5.3408409 14441.842
Atlantic (27.25,27.5] 1982-2000 –> 2001-2010 5.6753665 22859.154
Atlantic (27.25,27.5] 2001-2010 –> 2011-2019 5.9179151 14799.038
Atlantic (27.5,27.75] 1982-2000 –> 2001-2010 5.7615159 30282.075
Atlantic (27.5,27.75] 2001-2010 –> 2011-2019 6.1187689 20761.178
Atlantic (27.75,27.85] 1982-2000 –> 2001-2010 4.0683502 9303.806
Atlantic (27.75,27.85] 2001-2010 –> 2011-2019 4.1389784 6353.827
Atlantic (27.85,27.95] 1982-2000 –> 2001-2010 6.1139041 10896.080
Atlantic (27.85,27.95] 2001-2010 –> 2011-2019 6.8069556 7845.149
Atlantic (27.95,28.05] 1982-2000 –> 2001-2010 8.8867509 15661.216
Atlantic (27.95,28.05] 2001-2010 –> 2011-2019 8.5743217 10239.436
Atlantic (28.05,28.1] 1982-2000 –> 2001-2010 2.2954052 5511.912
Atlantic (28.05,28.1] 2001-2010 –> 2011-2019 2.3650511 3755.109
Atlantic (28.1,28.15] 1982-2000 –> 2001-2010 1.7240178 5328.057
Atlantic (28.1,28.15] 2001-2010 –> 2011-2019 1.8243958 3631.273
Atlantic (28.15,28.2] 1982-2000 –> 2001-2010 1.2206819 6564.660
Atlantic (28.15,28.2] 2001-2010 –> 2011-2019 1.4149777 4764.728
Atlantic (28.2, Inf] 1982-2000 –> 2001-2010 0.7953323 5765.206
Atlantic (28.2, Inf] 2001-2010 –> 2011-2019 0.8893712 4760.550
Indo-Pacific (-Inf,26] 1982-2000 –> 2001-2010 15.7995797 81773.048
Indo-Pacific (-Inf,26] 2001-2010 –> 2011-2019 14.7297401 52574.935
Indo-Pacific (26,26.5] 1982-2000 –> 2001-2010 10.8327467 77121.217
Indo-Pacific (26,26.5] 2001-2010 –> 2011-2019 10.4990866 49337.606
Indo-Pacific (26.5,26.75] 1982-2000 –> 2001-2010 9.0308883 59627.396
Indo-Pacific (26.5,26.75] 2001-2010 –> 2011-2019 8.9552574 38686.937
Indo-Pacific (26.75,27] 1982-2000 –> 2001-2010 8.9862119 70135.129
Indo-Pacific (26.75,27] 2001-2010 –> 2011-2019 9.4146424 46452.782
Indo-Pacific (27,27.25] 1982-2000 –> 2001-2010 8.7584427 83168.205
Indo-Pacific (27,27.25] 2001-2010 –> 2011-2019 9.5886094 56183.912
Indo-Pacific (27.25,27.5] 1982-2000 –> 2001-2010 7.5769941 70639.648
Indo-Pacific (27.25,27.5] 2001-2010 –> 2011-2019 8.1252600 48070.586
Indo-Pacific (27.5,27.75] 1982-2000 –> 2001-2010 6.5112884 67114.626
Indo-Pacific (27.5,27.75] 2001-2010 –> 2011-2019 7.7090940 46840.049
Indo-Pacific (27.75,27.85] 1982-2000 –> 2001-2010 5.3560348 24083.437
Indo-Pacific (27.75,27.85] 2001-2010 –> 2011-2019 6.1333334 17372.854
Indo-Pacific (27.85,27.95] 1982-2000 –> 2001-2010 5.1803124 29929.953
Indo-Pacific (27.85,27.95] 2001-2010 –> 2011-2019 6.0340114 21305.689
Indo-Pacific (27.95,28.05] 1982-2000 –> 2001-2010 4.3193340 24395.100
Indo-Pacific (27.95,28.05] 2001-2010 –> 2011-2019 4.7220317 16715.185
Indo-Pacific (28.05,28.1] 1982-2000 –> 2001-2010 3.6548318 16103.219
Indo-Pacific (28.05,28.1] 2001-2010 –> 2011-2019 3.9697648 10724.821
Indo-Pacific (28.1, Inf] 1982-2000 –> 2001-2010 2.6511951 109927.180
Indo-Pacific (28.1, Inf] 2001-2010 –> 2011-2019 2.9664920 77150.660

5.4 Target variable coefficients

A data frame to map the target variable is prepared.

# create table with two era belonging to one eras
eras_forward <- lm_all_fitted_wide %>%
  arrange(era) %>% 
  group_by(basin, gamma_slab, model) %>% 
  mutate(eras = paste(era, lead(era), sep = " --> ")) %>% 
  ungroup() %>% 
  select(era, eras) %>% 
  unique()

eras_backward <- lm_all_fitted_wide %>%
  arrange(era) %>% 
  group_by(basin, gamma_slab, model) %>% 
  mutate(eras = paste(lag(era), era, sep = " --> ")) %>% 
  ungroup() %>% 
  select(era, eras) %>% 
  unique()

eras_era <- full_join(eras_backward, eras_forward) %>% 
  filter(str_detect(eras, "NA") == FALSE)

# extend best model selection from eras to era
lm_best_target <- full_join(
  lm_best %>% select(basin, gamma_slab, model, eras),
  eras_era)

lm_best_target <- left_join(lm_best_target, lm_all_fitted_wide)

rm(eras_era, eras_forward, eras_backward,
   lm_all_fitted)

5.5 Plot selected model residuals

# plot model diagnostics, if activated
if (params_local$plot_all_figures == "y") {
  # mutate predictors column
  lm_best_plot <- lm_best_target %>%
    select(basin, gamma_slab, model, eras, era) %>%
    mutate(
      predictors = str_remove(model, paste(params_local$MLR_target, "~ ")),
      predictors = str_replace_all(predictors, "\\+ ", "")
    )
  
  # loop across all basins, era, gamma slabs, and MLRs
  # fit all MLR models
  for (i_basin in unique(GLODAP$basin)) {
    for (i_era in unique(GLODAP$era)) {
      #i_basin <- unique(GLODAP$basin)[1]
      #i_era   <- unique(GLODAP$era)[2]
      print(i_basin)
      print(i_era)
      
      GLODAP_basin_era <- GLODAP %>%
        filter(basin == i_basin, era == i_era)
      
      for (i_gamma_slab in unique(GLODAP_basin_era$gamma_slab)) {
        #i_gamma_slab <- unique(GLODAP_basin_era$gamma_slab)[1]
        print(i_gamma_slab)
        
        GLODAP_basin_era_slab <- GLODAP_basin_era %>%
          filter(gamma_slab == i_gamma_slab)
        
        lm_best_basin_era_slab <- lm_best_plot %>%
          filter(basin == i_basin, era == i_era, gamma_slab == i_gamma_slab)
        
        for (i_eras in unique(lm_best_basin_era_slab$eras)) {
          #i_eras <- unique(lm_best_basin_era_slab$eras)[1]
          print(i_eras)
          
          lm_best_basin_era_slab_eras <- lm_best_basin_era_slab %>%
            filter(eras == i_eras)
          
          for (i_predictors in unique(lm_best_basin_era_slab_eras$predictors)) {
            #i_predictors <- unique(lm_best_basin_era_slab$predictors)[1]
            print(i_predictors)
            # extract one model definition
            i_lm <- lm_all %>%
              filter(predictors == i_predictors) %>%
              select(lm_coeff) %>%
              pull()
            
             # fit model
          if (params_local$MLR_type == "rlm") {
            i_lm_fit <- MASS::rlm(as.formula(i_lm),
                                  data = GLODAP_basin_era_slab)
          }
          
          if (params_local$MLR_type == "lm") {
            i_lm_fit <- lm(as.formula(i_lm),
                           data = GLODAP_basin_era_slab)
          }
            
            # plot model diagnostics vs predictors
            
            p_model_predictors <- ggnostic(
              i_lm_fit,
              columnsY = c(params_local$MLR_target, ".fitted", ".resid"),
              title = paste(
                "era:",
                i_era,
                "| eras:",
                i_eras,
                "| basin:",
                i_basin,
                "| gamma slab:",
                i_gamma_slab,
                "| predictors:",
                i_predictors
              )
            )
            
            ggsave(
              plot = p_model_predictors,
              path = paste(path_version_figures, "eMLR_diagnostics/", sep = ""),
              filename = paste(
                "MLR_residuals",
                i_era,
                i_eras,
                i_basin,
                i_gamma_slab,
                i_predictors,
                "predictors.png",
                sep = "_"
              ),
              width = 14,
              height = 8
            )

            rm(p_model_predictors)
            
            
            # plot model diagnostics vs location
            
            GLODAP_basin_era_slab <- GLODAP_basin_era_slab %>%
              mutate(fitted = i_lm_fit$fitted.values,
                     residuals = i_lm_fit$residuals)
            
            GLODAP_basin_era_slab_long <- GLODAP_basin_era_slab %>% 
              pivot_longer(cols = c(params_local$MLR_target , fitted, residuals),
                           names_to = "estimate",
                           values_to = "value"
              ) %>% 
              pivot_longer(cols = c(lat, lon, depth),
                           names_to = "coordinate_type",
                           values_to = "coordinate_value"
              )

             p_model_coordinate <- GLODAP_basin_era_slab_long %>%
              ggplot(aes(coordinate_value, value)) +
              geom_bin2d() +
              scale_fill_viridis_c() +
              labs(
                title = paste(
                  "era:",
                  i_era,
                  "| eras:",
                  i_eras,
                  "| basin:",
                  i_basin,
                  "| gamma slab:",
                  i_gamma_slab,
                  "| predictors:",
                  i_predictors
                )
              ) +
              facet_grid(estimate~coordinate_type,
                         scales = "free")

            ggsave(
              plot = p_model_coordinate,
              path = paste(path_version_figures, "eMLR_diagnostics", sep = ""),
              filename = paste(
                "Location_MLR_residuals",
                i_era,
                i_eras,
                i_basin,
                i_gamma_slab,
                i_predictors,
                "predictors.png",
                sep = "_"
              ),
              width = 14,
              height = 8
            )

            rm(p_model_coordinate)
            
          }
          
        }
        
      }
    }
  }
  
  rm(
    lm_best_plot,
    lm_best_basin_era_slab,
    i_rmse,
    GLODAP_basin_era,
    GLODAP_basin_era_slab,
    i_lm,
    lm_all_fitted,
    i_basin,
    i_era,
    i_gamma_slab,
    i_predictors,
    lm_all,
    i_aic,
    i_n_predictors,
    i_resid_max
  )
  
}

Individual residual plots of the MLR models for each basin, era, eras and neutral density (gamma) slab are available at:

/nfs/kryo/work/jenmueller/emlr_cant/model/v_XXX/figures/eMLR_diagnostics/

5.6 Cant coeffcients

A data frame of coefficient offsets is prepared to facilitate the direct mapping of Cant.

# pivot long format
lm_best_long <- lm_best_target %>%
  pivot_longer(cols = starts_with("coeff_"),
               names_to = "term",
               values_to = "estimate",
               names_prefix = "coeff_")

# subtract coefficients of adjacent era  
lm_best_long <- lm_best_long %>%
  arrange(era) %>%
  group_by(basin, gamma_slab, eras, model, term) %>%
  mutate(delta_coeff = estimate - lag(estimate)) %>%
  ungroup() %>%
  arrange(basin, gamma_slab, model, term, eras) %>%
  drop_na() %>%
  select(-c(era,estimate))

# pivot back to wide format
lm_best_cant <- lm_best_long %>%
  pivot_wider(values_from = delta_coeff,
              names_from = term,
              names_prefix = "delta_coeff_",
              values_fill = 0)

5.7 Write files

lm_best_target %>%
  select(
    basin,
    gamma_slab,
    model,
    eras,
    era,
    starts_with("coeff_")
  ) %>%
  write_csv(paste(path_version_data,
                  "lm_best_target.csv",
                  sep = ""))

lm_best_cant %>%
  select(
    basin,
    gamma_slab,
    model,
    eras,
    starts_with("delta_coeff_")
  ) %>%
  write_csv(paste(path_version_data,
                  "lm_best_cant.csv",
                  sep = ""))

6 Model diagnotics

6.1 Selection criterion vs predictors

The selection criterion (aic) was plotted against the number of predictors (limited to 3 - 9).

6.1.1 All models

lm_all_fitted_wide %>%
  ggplot(aes(as.factor(n_predictors),
             !!sym(params_local$MLR_criterion),
             col = basin)) +
  geom_hline(yintercept = 10) +
  geom_boxplot() +
  facet_grid(gamma_slab~era) +
  scale_color_brewer(palette = "Set1") +
  labs(x="Number of predictors")

Version Author Date
e8c6f30 Donghe-Zhu 2021-03-04
59288fe Donghe-Zhu 2021-03-04
731abc8 Donghe-Zhu 2021-03-04
e2a5a33 Donghe-Zhu 2021-03-04
c7892c1 Donghe-Zhu 2021-03-04
924430b Donghe-Zhu 2021-03-03
0d0bca1 Donghe-Zhu 2021-03-03
cb63c16 Donghe-Zhu 2021-03-03
ffda45a Donghe-Zhu 2021-03-03
691ba81 Donghe-Zhu 2021-03-03
c5e45a2 Donghe-Zhu 2021-03-03
89c3e58 Donghe-Zhu 2021-03-03
c911669 Donghe-Zhu 2021-03-03
b71c719 Donghe-Zhu 2021-03-01
13666ca Donghe-Zhu 2021-03-01
c6e60fe Donghe-Zhu 2021-03-01
7a388f7 Donghe-Zhu 2021-03-01
799e913 Donghe-Zhu 2021-03-01
66ff99f Donghe-Zhu 2021-03-01
ac9bb7a Donghe-Zhu 2021-02-28
efdc047 Donghe-Zhu 2021-02-28
e9a7418 Donghe-Zhu 2021-02-28
e152917 Donghe-Zhu 2021-02-28
287123c Donghe-Zhu 2021-02-27
54d5b5b Donghe-Zhu 2021-02-27
330f064 Donghe-Zhu 2021-02-27
adbc9bc Donghe-Zhu 2021-02-27
5937141 Donghe-Zhu 2021-02-27
4414bbf Donghe-Zhu 2021-02-27
a265efb Donghe-Zhu 2021-02-27
19edd1e Donghe-Zhu 2021-02-27
f20483f Donghe-Zhu 2021-02-26
6a2c7b3 Donghe-Zhu 2021-02-25
02b976d Donghe-Zhu 2021-02-24
354c224 Donghe-Zhu 2021-02-24
1a0a88a Donghe-Zhu 2021-02-24
57f701e Donghe-Zhu 2021-02-24
06f3149 Donghe-Zhu 2021-02-16
401eab3 Donghe-Zhu 2021-02-15
e3bba84 Donghe-Zhu 2021-02-15
5dce4b1 Donghe-Zhu 2021-02-15
4469a0c Donghe-Zhu 2021-02-13
5ae6a69 Donghe-Zhu 2021-02-10
05385dc Donghe-Zhu 2021-02-10
f791ae4 Donghe-Zhu 2021-02-09
f71ae34 Donghe-Zhu 2021-02-09
c011832 Donghe-Zhu 2021-02-09
a145fa7 Donghe-Zhu 2021-02-09
c344e42 Donghe-Zhu 2021-02-08
2f095d7 Donghe-Zhu 2021-02-07
1fad5f1 Donghe-Zhu 2021-02-07
ca03c39 Donghe-Zhu 2021-02-07
cd7c52c Donghe-Zhu 2021-02-04
bcf84f4 Donghe-Zhu 2021-02-02
a518739 Donghe-Zhu 2021-02-01
61666de Donghe-Zhu 2021-01-31
865b582 Donghe-Zhu 2021-01-31
3e68089 Donghe-Zhu 2021-01-31
ecf335c Donghe-Zhu 2021-01-31
a618965 Donghe-Zhu 2021-01-31
59e006e Donghe-Zhu 2021-01-31
a1c8f87 Donghe-Zhu 2021-01-31
ae5c18f Donghe-Zhu 2021-01-31
b50fe52 Donghe-Zhu 2021-01-31
ac99ae5 jens-daniel-mueller 2021-01-29
b5bdcaf Donghe-Zhu 2021-01-29
442010d Donghe-Zhu 2021-01-29
372adf5 Donghe-Zhu 2021-01-29
af8788e Donghe-Zhu 2021-01-29
21c91c9 Donghe-Zhu 2021-01-29
eded038 Donghe-Zhu 2021-01-29
541d4dd Donghe-Zhu 2021-01-29
6a75576 Donghe-Zhu 2021-01-28
16fba40 Donghe-Zhu 2021-01-28
12bc567 Donghe-Zhu 2021-01-27
ceed31b Donghe-Zhu 2021-01-27
342402d Donghe-Zhu 2021-01-27
5bad5c2 Donghe-Zhu 2021-01-27
61efb56 Donghe-Zhu 2021-01-25
48f638e Donghe-Zhu 2021-01-25
c1cec47 Donghe-Zhu 2021-01-25
05ffb0c Donghe-Zhu 2021-01-25
8b97165 Donghe-Zhu 2021-01-25
c569946 Donghe-Zhu 2021-01-24
a2f0d56 Donghe-Zhu 2021-01-23
28509fc Donghe-Zhu 2021-01-23
4c28e4a Donghe-Zhu 2021-01-22
24cc264 jens-daniel-mueller 2021-01-22
7891955 Donghe-Zhu 2021-01-21
d4cf1cb Donghe-Zhu 2021-01-21
1f3e5b6 jens-daniel-mueller 2021-01-20
0e7bdf1 jens-daniel-mueller 2021-01-15
4571843 jens-daniel-mueller 2021-01-14
b3564aa jens-daniel-mueller 2021-01-14
8d032c3 jens-daniel-mueller 2021-01-14
17dee1d jens-daniel-mueller 2021-01-13
7cdea0c jens-daniel-mueller 2021-01-06
fa85b93 jens-daniel-mueller 2021-01-06
e5cb81a Donghe-Zhu 2021-01-05
a499f10 Donghe-Zhu 2021-01-05
fb8a752 Donghe-Zhu 2020-12-23
8fae0b2 Donghe-Zhu 2020-12-21
c8b76b3 jens-daniel-mueller 2020-12-19

6.1.2 Best models

lm_best_target %>%
  ggplot(aes("",
             !!sym(params_local$MLR_criterion),
             col = basin)) +
  geom_hline(yintercept = 10) +
  geom_boxplot() +
  facet_grid(gamma_slab~era) +
  scale_color_brewer(palette = "Set1") +
  labs(x="Number of predictors pooled")

Version Author Date
e8c6f30 Donghe-Zhu 2021-03-04
59288fe Donghe-Zhu 2021-03-04
731abc8 Donghe-Zhu 2021-03-04
e2a5a33 Donghe-Zhu 2021-03-04
c7892c1 Donghe-Zhu 2021-03-04
924430b Donghe-Zhu 2021-03-03
0d0bca1 Donghe-Zhu 2021-03-03
cb63c16 Donghe-Zhu 2021-03-03
ffda45a Donghe-Zhu 2021-03-03
691ba81 Donghe-Zhu 2021-03-03
c5e45a2 Donghe-Zhu 2021-03-03
89c3e58 Donghe-Zhu 2021-03-03
c407a50 Donghe-Zhu 2021-03-03
c911669 Donghe-Zhu 2021-03-03
b71c719 Donghe-Zhu 2021-03-01
13666ca Donghe-Zhu 2021-03-01
c6e60fe Donghe-Zhu 2021-03-01
7a388f7 Donghe-Zhu 2021-03-01
799e913 Donghe-Zhu 2021-03-01
66ff99f Donghe-Zhu 2021-03-01
ac9bb7a Donghe-Zhu 2021-02-28
efdc047 Donghe-Zhu 2021-02-28
e9a7418 Donghe-Zhu 2021-02-28
e152917 Donghe-Zhu 2021-02-28
287123c Donghe-Zhu 2021-02-27
54d5b5b Donghe-Zhu 2021-02-27
330f064 Donghe-Zhu 2021-02-27
adbc9bc Donghe-Zhu 2021-02-27
5937141 Donghe-Zhu 2021-02-27
4414bbf Donghe-Zhu 2021-02-27
a265efb Donghe-Zhu 2021-02-27
19edd1e Donghe-Zhu 2021-02-27
f20483f Donghe-Zhu 2021-02-26
6a2c7b3 Donghe-Zhu 2021-02-25
354c224 Donghe-Zhu 2021-02-24
1a0a88a Donghe-Zhu 2021-02-24
57f701e Donghe-Zhu 2021-02-24
06f3149 Donghe-Zhu 2021-02-16
401eab3 Donghe-Zhu 2021-02-15
e3bba84 Donghe-Zhu 2021-02-15
5dce4b1 Donghe-Zhu 2021-02-15
4469a0c Donghe-Zhu 2021-02-13
5ae6a69 Donghe-Zhu 2021-02-10
05385dc Donghe-Zhu 2021-02-10
f791ae4 Donghe-Zhu 2021-02-09
f71ae34 Donghe-Zhu 2021-02-09
c011832 Donghe-Zhu 2021-02-09
a145fa7 Donghe-Zhu 2021-02-09
c344e42 Donghe-Zhu 2021-02-08
2f095d7 Donghe-Zhu 2021-02-07
1fad5f1 Donghe-Zhu 2021-02-07
ca03c39 Donghe-Zhu 2021-02-07
e2ffc14 Donghe-Zhu 2021-02-05
cd7c52c Donghe-Zhu 2021-02-04
bcf84f4 Donghe-Zhu 2021-02-02
a518739 Donghe-Zhu 2021-02-01
61666de Donghe-Zhu 2021-01-31
865b582 Donghe-Zhu 2021-01-31
3e68089 Donghe-Zhu 2021-01-31
ecf335c Donghe-Zhu 2021-01-31
a618965 Donghe-Zhu 2021-01-31
59e006e Donghe-Zhu 2021-01-31
a1c8f87 Donghe-Zhu 2021-01-31
ae5c18f Donghe-Zhu 2021-01-31
b50fe52 Donghe-Zhu 2021-01-31
ac99ae5 jens-daniel-mueller 2021-01-29
b5bdcaf Donghe-Zhu 2021-01-29
442010d Donghe-Zhu 2021-01-29
372adf5 Donghe-Zhu 2021-01-29
af8788e Donghe-Zhu 2021-01-29
21c91c9 Donghe-Zhu 2021-01-29
eded038 Donghe-Zhu 2021-01-29
541d4dd Donghe-Zhu 2021-01-29
6a75576 Donghe-Zhu 2021-01-28
16fba40 Donghe-Zhu 2021-01-28
12bc567 Donghe-Zhu 2021-01-27
ceed31b Donghe-Zhu 2021-01-27
342402d Donghe-Zhu 2021-01-27
5bad5c2 Donghe-Zhu 2021-01-27
61efb56 Donghe-Zhu 2021-01-25
48f638e Donghe-Zhu 2021-01-25
c1cec47 Donghe-Zhu 2021-01-25
05ffb0c Donghe-Zhu 2021-01-25
8b97165 Donghe-Zhu 2021-01-25
c569946 Donghe-Zhu 2021-01-24
a2f0d56 Donghe-Zhu 2021-01-23
28509fc Donghe-Zhu 2021-01-23
4c28e4a Donghe-Zhu 2021-01-22
24cc264 jens-daniel-mueller 2021-01-22
7891955 Donghe-Zhu 2021-01-21
d4cf1cb Donghe-Zhu 2021-01-21
1f3e5b6 jens-daniel-mueller 2021-01-20
0e7bdf1 jens-daniel-mueller 2021-01-15
4571843 jens-daniel-mueller 2021-01-14
b3564aa jens-daniel-mueller 2021-01-14
8d032c3 jens-daniel-mueller 2021-01-14
17dee1d jens-daniel-mueller 2021-01-13
7cdea0c jens-daniel-mueller 2021-01-06
fa85b93 jens-daniel-mueller 2021-01-06
e5cb81a Donghe-Zhu 2021-01-05
a499f10 Donghe-Zhu 2021-01-05
fb8a752 Donghe-Zhu 2020-12-23
8fae0b2 Donghe-Zhu 2020-12-21
c8b76b3 jens-daniel-mueller 2020-12-19

6.2 RMSE correlation between eras

RMSE was plotted to compare the agreement for one model applied to two adjacent eras (ie check whether the same predictor combination performs equal in both eras).

6.2.1 All models

# find max rmse to scale axis
max_rmse <-
  max(c(lm_all_fitted_wide_eras$rmse,
        lm_all_fitted_wide_eras$rmse_sum - lm_all_fitted_wide_eras$rmse))

lm_all_fitted_wide_eras %>%
  ggplot(aes(rmse, rmse_sum - rmse, col = gamma_slab)) +
  geom_point() +
  scale_color_viridis_d() +
  coord_equal(xlim = c(0,max_rmse),
              ylim = c(0,max_rmse)) +
  facet_grid(eras ~ basin)

Version Author Date
e8c6f30 Donghe-Zhu 2021-03-04
59288fe Donghe-Zhu 2021-03-04
731abc8 Donghe-Zhu 2021-03-04
e2a5a33 Donghe-Zhu 2021-03-04
c7892c1 Donghe-Zhu 2021-03-04
924430b Donghe-Zhu 2021-03-03
0d0bca1 Donghe-Zhu 2021-03-03
cb63c16 Donghe-Zhu 2021-03-03
ffda45a Donghe-Zhu 2021-03-03
691ba81 Donghe-Zhu 2021-03-03
c5e45a2 Donghe-Zhu 2021-03-03
89c3e58 Donghe-Zhu 2021-03-03
c911669 Donghe-Zhu 2021-03-03
13666ca Donghe-Zhu 2021-03-01
c6e60fe Donghe-Zhu 2021-03-01
7a388f7 Donghe-Zhu 2021-03-01
799e913 Donghe-Zhu 2021-03-01
66ff99f Donghe-Zhu 2021-03-01
ac9bb7a Donghe-Zhu 2021-02-28
efdc047 Donghe-Zhu 2021-02-28
e9a7418 Donghe-Zhu 2021-02-28
287123c Donghe-Zhu 2021-02-27
54d5b5b Donghe-Zhu 2021-02-27
330f064 Donghe-Zhu 2021-02-27
adbc9bc Donghe-Zhu 2021-02-27
5937141 Donghe-Zhu 2021-02-27
4414bbf Donghe-Zhu 2021-02-27
a265efb Donghe-Zhu 2021-02-27
19edd1e Donghe-Zhu 2021-02-27
f20483f Donghe-Zhu 2021-02-26
6a2c7b3 Donghe-Zhu 2021-02-25
02b976d Donghe-Zhu 2021-02-24
354c224 Donghe-Zhu 2021-02-24
1a0a88a Donghe-Zhu 2021-02-24
57f701e Donghe-Zhu 2021-02-24
06f3149 Donghe-Zhu 2021-02-16
e3bba84 Donghe-Zhu 2021-02-15
5dce4b1 Donghe-Zhu 2021-02-15
4469a0c Donghe-Zhu 2021-02-13
5ae6a69 Donghe-Zhu 2021-02-10
05385dc Donghe-Zhu 2021-02-10
f791ae4 Donghe-Zhu 2021-02-09
f71ae34 Donghe-Zhu 2021-02-09
c011832 Donghe-Zhu 2021-02-09
a145fa7 Donghe-Zhu 2021-02-09
c344e42 Donghe-Zhu 2021-02-08
2f095d7 Donghe-Zhu 2021-02-07
1fad5f1 Donghe-Zhu 2021-02-07
ca03c39 Donghe-Zhu 2021-02-07
cd7c52c Donghe-Zhu 2021-02-04
bcf84f4 Donghe-Zhu 2021-02-02
61666de Donghe-Zhu 2021-01-31
865b582 Donghe-Zhu 2021-01-31
3e68089 Donghe-Zhu 2021-01-31
ecf335c Donghe-Zhu 2021-01-31
a618965 Donghe-Zhu 2021-01-31
59e006e Donghe-Zhu 2021-01-31
a1c8f87 Donghe-Zhu 2021-01-31
ae5c18f Donghe-Zhu 2021-01-31
b50fe52 Donghe-Zhu 2021-01-31
ac99ae5 jens-daniel-mueller 2021-01-29
b5bdcaf Donghe-Zhu 2021-01-29
442010d Donghe-Zhu 2021-01-29
372adf5 Donghe-Zhu 2021-01-29
af8788e Donghe-Zhu 2021-01-29
21c91c9 Donghe-Zhu 2021-01-29
eded038 Donghe-Zhu 2021-01-29
541d4dd Donghe-Zhu 2021-01-29
6a75576 Donghe-Zhu 2021-01-28
16fba40 Donghe-Zhu 2021-01-28
12bc567 Donghe-Zhu 2021-01-27
ceed31b Donghe-Zhu 2021-01-27
342402d Donghe-Zhu 2021-01-27
5bad5c2 Donghe-Zhu 2021-01-27
61efb56 Donghe-Zhu 2021-01-25
48f638e Donghe-Zhu 2021-01-25
c1cec47 Donghe-Zhu 2021-01-25
05ffb0c Donghe-Zhu 2021-01-25
8b97165 Donghe-Zhu 2021-01-25
c569946 Donghe-Zhu 2021-01-24
a2f0d56 Donghe-Zhu 2021-01-23
28509fc Donghe-Zhu 2021-01-23
4c28e4a Donghe-Zhu 2021-01-22
24cc264 jens-daniel-mueller 2021-01-22
7891955 Donghe-Zhu 2021-01-21
d4cf1cb Donghe-Zhu 2021-01-21
1f3e5b6 jens-daniel-mueller 2021-01-20
0e7bdf1 jens-daniel-mueller 2021-01-15
4571843 jens-daniel-mueller 2021-01-14
b3564aa jens-daniel-mueller 2021-01-14
8d032c3 jens-daniel-mueller 2021-01-14
17dee1d jens-daniel-mueller 2021-01-13
7cdea0c jens-daniel-mueller 2021-01-06
fa85b93 jens-daniel-mueller 2021-01-06
e5cb81a Donghe-Zhu 2021-01-05
a499f10 Donghe-Zhu 2021-01-05
fb8a752 Donghe-Zhu 2020-12-23
8fae0b2 Donghe-Zhu 2020-12-21
c8b76b3 jens-daniel-mueller 2020-12-19
rm(max_rmse)

6.2.2 Best models

# find max rmse to scale axis
max_rmse <-
  max(c(lm_best$rmse,
        lm_best$rmse_sum - lm_best$rmse))

lm_best %>%
  ggplot(aes(rmse, rmse_sum - rmse, col = gamma_slab)) +
  geom_point() +
  scale_color_viridis_d() +
  coord_equal(xlim = c(0,max_rmse),
              ylim = c(0,max_rmse)) +
  facet_grid(eras ~ basin)

Version Author Date
e8c6f30 Donghe-Zhu 2021-03-04
59288fe Donghe-Zhu 2021-03-04
731abc8 Donghe-Zhu 2021-03-04
e2a5a33 Donghe-Zhu 2021-03-04
c7892c1 Donghe-Zhu 2021-03-04
924430b Donghe-Zhu 2021-03-03
0d0bca1 Donghe-Zhu 2021-03-03
cb63c16 Donghe-Zhu 2021-03-03
ffda45a Donghe-Zhu 2021-03-03
691ba81 Donghe-Zhu 2021-03-03
c5e45a2 Donghe-Zhu 2021-03-03
89c3e58 Donghe-Zhu 2021-03-03
c407a50 Donghe-Zhu 2021-03-03
c911669 Donghe-Zhu 2021-03-03
b71c719 Donghe-Zhu 2021-03-01
13666ca Donghe-Zhu 2021-03-01
c6e60fe Donghe-Zhu 2021-03-01
7a388f7 Donghe-Zhu 2021-03-01
799e913 Donghe-Zhu 2021-03-01
66ff99f Donghe-Zhu 2021-03-01
ac9bb7a Donghe-Zhu 2021-02-28
efdc047 Donghe-Zhu 2021-02-28
e9a7418 Donghe-Zhu 2021-02-28
e152917 Donghe-Zhu 2021-02-28
287123c Donghe-Zhu 2021-02-27
54d5b5b Donghe-Zhu 2021-02-27
330f064 Donghe-Zhu 2021-02-27
adbc9bc Donghe-Zhu 2021-02-27
5937141 Donghe-Zhu 2021-02-27
4414bbf Donghe-Zhu 2021-02-27
a265efb Donghe-Zhu 2021-02-27
19edd1e Donghe-Zhu 2021-02-27
f20483f Donghe-Zhu 2021-02-26
6a2c7b3 Donghe-Zhu 2021-02-25
354c224 Donghe-Zhu 2021-02-24
1a0a88a Donghe-Zhu 2021-02-24
57f701e Donghe-Zhu 2021-02-24
06f3149 Donghe-Zhu 2021-02-16
401eab3 Donghe-Zhu 2021-02-15
e3bba84 Donghe-Zhu 2021-02-15
5dce4b1 Donghe-Zhu 2021-02-15
4469a0c Donghe-Zhu 2021-02-13
5ae6a69 Donghe-Zhu 2021-02-10
05385dc Donghe-Zhu 2021-02-10
f791ae4 Donghe-Zhu 2021-02-09
f71ae34 Donghe-Zhu 2021-02-09
c011832 Donghe-Zhu 2021-02-09
a145fa7 Donghe-Zhu 2021-02-09
c344e42 Donghe-Zhu 2021-02-08
2f095d7 Donghe-Zhu 2021-02-07
1fad5f1 Donghe-Zhu 2021-02-07
ca03c39 Donghe-Zhu 2021-02-07
e2ffc14 Donghe-Zhu 2021-02-05
cd7c52c Donghe-Zhu 2021-02-04
bcf84f4 Donghe-Zhu 2021-02-02
a518739 Donghe-Zhu 2021-02-01
61666de Donghe-Zhu 2021-01-31
865b582 Donghe-Zhu 2021-01-31
3e68089 Donghe-Zhu 2021-01-31
ecf335c Donghe-Zhu 2021-01-31
a618965 Donghe-Zhu 2021-01-31
59e006e Donghe-Zhu 2021-01-31
a1c8f87 Donghe-Zhu 2021-01-31
ae5c18f Donghe-Zhu 2021-01-31
b50fe52 Donghe-Zhu 2021-01-31
ac99ae5 jens-daniel-mueller 2021-01-29
b5bdcaf Donghe-Zhu 2021-01-29
442010d Donghe-Zhu 2021-01-29
372adf5 Donghe-Zhu 2021-01-29
af8788e Donghe-Zhu 2021-01-29
21c91c9 Donghe-Zhu 2021-01-29
eded038 Donghe-Zhu 2021-01-29
541d4dd Donghe-Zhu 2021-01-29
6a75576 Donghe-Zhu 2021-01-28
16fba40 Donghe-Zhu 2021-01-28
12bc567 Donghe-Zhu 2021-01-27
ceed31b Donghe-Zhu 2021-01-27
342402d Donghe-Zhu 2021-01-27
5bad5c2 Donghe-Zhu 2021-01-27
61efb56 Donghe-Zhu 2021-01-25
48f638e Donghe-Zhu 2021-01-25
c1cec47 Donghe-Zhu 2021-01-25
05ffb0c Donghe-Zhu 2021-01-25
8b97165 Donghe-Zhu 2021-01-25
c569946 Donghe-Zhu 2021-01-24
a2f0d56 Donghe-Zhu 2021-01-23
28509fc Donghe-Zhu 2021-01-23
4c28e4a Donghe-Zhu 2021-01-22
24cc264 jens-daniel-mueller 2021-01-22
7891955 Donghe-Zhu 2021-01-21
d4cf1cb Donghe-Zhu 2021-01-21
1f3e5b6 jens-daniel-mueller 2021-01-20
0e7bdf1 jens-daniel-mueller 2021-01-15
4571843 jens-daniel-mueller 2021-01-14
b3564aa jens-daniel-mueller 2021-01-14
8d032c3 jens-daniel-mueller 2021-01-14
17dee1d jens-daniel-mueller 2021-01-13
7cdea0c jens-daniel-mueller 2021-01-06
fa85b93 jens-daniel-mueller 2021-01-06
e5cb81a Donghe-Zhu 2021-01-05
a499f10 Donghe-Zhu 2021-01-05
fb8a752 Donghe-Zhu 2020-12-23
8fae0b2 Donghe-Zhu 2020-12-21
c8b76b3 jens-daniel-mueller 2020-12-19
rm(max_rmse)

6.3 Predictor counts

The number of models where a particular predictor was included were counted for each basin, density slab and compared eras

# calculate cases of predictor used
lm_all_stats <- lm_best_long %>% 
  filter(term != "(Intercept)",
         delta_coeff != 0) %>% 
  group_by(basin, eras, gamma_slab) %>% 
  count(term) %>% 
  ungroup() %>% 
  pivot_wider(values_from = n,
              names_from = term,
              values_fill = 0)

# print table
lm_all_stats %>%
  gt(rowname_col = "gamma_slab",
     groupname_col = c("basin", "eras")) %>% 
  summary_rows(
    groups = TRUE,
    fns = list(total = "sum")
  )
aou nitrate phosphate phosphate_star sal silicate temp
Atlantic - 1982-2000 --> 2001-2010
(-Inf,26] 3 3 2 4 5 3 0
(26,26.5] 5 3 2 4 1 4 4
(26.5,26.75] 5 1 4 4 2 5 2
(26.75,27] 5 1 4 4 1 5 3
(27,27.25] 5 2 3 4 3 5 2
(27.25,27.5] 5 4 1 3 3 5 2
(27.5,27.75] 5 1 4 3 4 3 1
(27.75,27.85] 5 2 3 3 5 4 0
(27.85,27.95] 5 0 5 5 2 3 2
(27.95,28.05] 5 2 2 5 1 4 4
(28.05,28.1] 5 0 5 5 2 3 2
(28.1,28.15] 5 0 5 4 2 4 2
(28.15,28.2] 5 5 0 4 2 3 3
(28.2, Inf] 5 5 0 3 4 3 1
total 68.00 29.00 40.00 55.00 37.00 54.00 28.00
Atlantic - 2001-2010 --> 2011-2019
(-Inf,26] 5 2 2 5 5 3 0
(26,26.5] 5 3 2 4 1 4 4
(26.5,26.75] 5 1 4 4 2 5 2
(26.75,27] 5 1 4 4 2 5 2
(27,27.25] 5 2 2 4 4 5 1
(27.25,27.5] 5 5 0 3 2 5 2
(27.5,27.75] 5 2 3 3 5 4 0
(27.75,27.85] 5 2 3 3 5 4 0
(27.85,27.95] 5 0 5 5 2 3 2
(27.95,28.05] 5 2 2 5 1 4 4
(28.05,28.1] 5 1 4 5 3 3 2
(28.1,28.15] 5 1 4 5 3 3 2
(28.15,28.2] 5 5 0 4 2 3 3
(28.2, Inf] 5 5 0 3 4 3 1
total 70.00 32.00 35.00 57.00 41.00 54.00 25.00
Indo-Pacific - 1982-2000 --> 2001-2010
(-Inf,26] 4 1 4 5 2 4 3
(26,26.5] 5 1 4 4 1 5 3
(26.5,26.75] 4 2 3 5 1 5 3
(26.75,27] 5 0 5 5 2 3 2
(27,27.25] 4 2 3 5 1 4 4
(27.25,27.5] 5 2 2 5 3 5 2
(27.5,27.75] 3 2 2 5 5 5 0
(27.75,27.85] 5 1 4 4 1 5 3
(27.85,27.95] 3 5 0 4 0 3 5
(27.95,28.05] 5 1 4 4 1 5 3
(28.05,28.1] 4 1 4 4 3 5 2
(28.1, Inf] 4 2 3 4 2 5 3
total 51.00 20.00 38.00 54.00 22.00 54.00 33.00
Indo-Pacific - 2001-2010 --> 2011-2019
(-Inf,26] 4 1 4 5 2 4 3
(26,26.5] 5 1 4 4 1 5 3
(26.5,26.75] 4 2 3 5 1 5 3
(26.75,27] 5 0 5 5 2 3 2
(27,27.25] 5 1 4 5 1 4 3
(27.25,27.5] 5 2 2 5 3 5 2
(27.5,27.75] 4 2 2 5 4 5 1
(27.75,27.85] 4 3 2 5 2 4 3
(27.85,27.95] 5 4 1 3 0 3 5
(27.95,28.05] 5 2 3 5 3 3 2
(28.05,28.1] 5 1 4 4 1 5 3
(28.1, Inf] 5 2 3 4 3 5 2
total 56.00 21.00 37.00 55.00 23.00 51.00 32.00

6.4 RMSE alternatives

AIC is an alternative criterion to RMSE to judge model quality, but not (yet) taken into account.

lm_all_fitted_wide_eras %>% 
  ggplot(aes(rmse, aic, col = gamma_slab)) +
  geom_point() +
  scale_color_viridis_d() +
  facet_grid(eras~basin)

Version Author Date
e8c6f30 Donghe-Zhu 2021-03-04
59288fe Donghe-Zhu 2021-03-04
731abc8 Donghe-Zhu 2021-03-04
e2a5a33 Donghe-Zhu 2021-03-04
c7892c1 Donghe-Zhu 2021-03-04
924430b Donghe-Zhu 2021-03-03
0d0bca1 Donghe-Zhu 2021-03-03
cb63c16 Donghe-Zhu 2021-03-03
ffda45a Donghe-Zhu 2021-03-03
691ba81 Donghe-Zhu 2021-03-03
c5e45a2 Donghe-Zhu 2021-03-03
89c3e58 Donghe-Zhu 2021-03-03
c911669 Donghe-Zhu 2021-03-03
13666ca Donghe-Zhu 2021-03-01
c6e60fe Donghe-Zhu 2021-03-01
7a388f7 Donghe-Zhu 2021-03-01
799e913 Donghe-Zhu 2021-03-01
66ff99f Donghe-Zhu 2021-03-01
ac9bb7a Donghe-Zhu 2021-02-28
efdc047 Donghe-Zhu 2021-02-28
e9a7418 Donghe-Zhu 2021-02-28
287123c Donghe-Zhu 2021-02-27
54d5b5b Donghe-Zhu 2021-02-27
330f064 Donghe-Zhu 2021-02-27
adbc9bc Donghe-Zhu 2021-02-27
5937141 Donghe-Zhu 2021-02-27
4414bbf Donghe-Zhu 2021-02-27
a265efb Donghe-Zhu 2021-02-27
19edd1e Donghe-Zhu 2021-02-27
f20483f Donghe-Zhu 2021-02-26
6a2c7b3 Donghe-Zhu 2021-02-25
02b976d Donghe-Zhu 2021-02-24
354c224 Donghe-Zhu 2021-02-24
1a0a88a Donghe-Zhu 2021-02-24
57f701e Donghe-Zhu 2021-02-24
06f3149 Donghe-Zhu 2021-02-16
e3bba84 Donghe-Zhu 2021-02-15
5dce4b1 Donghe-Zhu 2021-02-15
4469a0c Donghe-Zhu 2021-02-13
5ae6a69 Donghe-Zhu 2021-02-10
05385dc Donghe-Zhu 2021-02-10
f791ae4 Donghe-Zhu 2021-02-09
f71ae34 Donghe-Zhu 2021-02-09
c011832 Donghe-Zhu 2021-02-09
a145fa7 Donghe-Zhu 2021-02-09
c344e42 Donghe-Zhu 2021-02-08
2f095d7 Donghe-Zhu 2021-02-07
1fad5f1 Donghe-Zhu 2021-02-07
ca03c39 Donghe-Zhu 2021-02-07
cd7c52c Donghe-Zhu 2021-02-04
bcf84f4 Donghe-Zhu 2021-02-02
61666de Donghe-Zhu 2021-01-31
865b582 Donghe-Zhu 2021-01-31
3e68089 Donghe-Zhu 2021-01-31
ecf335c Donghe-Zhu 2021-01-31
a618965 Donghe-Zhu 2021-01-31
59e006e Donghe-Zhu 2021-01-31
a1c8f87 Donghe-Zhu 2021-01-31
ae5c18f Donghe-Zhu 2021-01-31
b50fe52 Donghe-Zhu 2021-01-31
ac99ae5 jens-daniel-mueller 2021-01-29
b5bdcaf Donghe-Zhu 2021-01-29
442010d Donghe-Zhu 2021-01-29
372adf5 Donghe-Zhu 2021-01-29
af8788e Donghe-Zhu 2021-01-29
21c91c9 Donghe-Zhu 2021-01-29
eded038 Donghe-Zhu 2021-01-29
541d4dd Donghe-Zhu 2021-01-29
6a75576 Donghe-Zhu 2021-01-28
16fba40 Donghe-Zhu 2021-01-28
12bc567 Donghe-Zhu 2021-01-27
ceed31b Donghe-Zhu 2021-01-27
342402d Donghe-Zhu 2021-01-27
5bad5c2 Donghe-Zhu 2021-01-27
61efb56 Donghe-Zhu 2021-01-25
48f638e Donghe-Zhu 2021-01-25
c1cec47 Donghe-Zhu 2021-01-25
05ffb0c Donghe-Zhu 2021-01-25
8b97165 Donghe-Zhu 2021-01-25
c569946 Donghe-Zhu 2021-01-24
a2f0d56 Donghe-Zhu 2021-01-23
28509fc Donghe-Zhu 2021-01-23
4c28e4a Donghe-Zhu 2021-01-22
24cc264 jens-daniel-mueller 2021-01-22
7891955 Donghe-Zhu 2021-01-21
d4cf1cb Donghe-Zhu 2021-01-21
1f3e5b6 jens-daniel-mueller 2021-01-20
0e7bdf1 jens-daniel-mueller 2021-01-15
4571843 jens-daniel-mueller 2021-01-14
b3564aa jens-daniel-mueller 2021-01-14
8d032c3 jens-daniel-mueller 2021-01-14
17dee1d jens-daniel-mueller 2021-01-13
7cdea0c jens-daniel-mueller 2021-01-06
fa85b93 jens-daniel-mueller 2021-01-06
e5cb81a Donghe-Zhu 2021-01-05
a499f10 Donghe-Zhu 2021-01-05
fb8a752 Donghe-Zhu 2020-12-23
8fae0b2 Donghe-Zhu 2020-12-21
c8b76b3 jens-daniel-mueller 2020-12-19
lm_best %>% 
  ggplot(aes(rmse, aic, col = gamma_slab)) +
  geom_point() +
  scale_color_viridis_d() +
  facet_grid(eras~basin)

Version Author Date
e8c6f30 Donghe-Zhu 2021-03-04
59288fe Donghe-Zhu 2021-03-04
731abc8 Donghe-Zhu 2021-03-04
e2a5a33 Donghe-Zhu 2021-03-04
c7892c1 Donghe-Zhu 2021-03-04
924430b Donghe-Zhu 2021-03-03
0d0bca1 Donghe-Zhu 2021-03-03
cb63c16 Donghe-Zhu 2021-03-03
ffda45a Donghe-Zhu 2021-03-03
691ba81 Donghe-Zhu 2021-03-03
c5e45a2 Donghe-Zhu 2021-03-03
89c3e58 Donghe-Zhu 2021-03-03
c407a50 Donghe-Zhu 2021-03-03
c911669 Donghe-Zhu 2021-03-03
b71c719 Donghe-Zhu 2021-03-01
13666ca Donghe-Zhu 2021-03-01
c6e60fe Donghe-Zhu 2021-03-01
7a388f7 Donghe-Zhu 2021-03-01
799e913 Donghe-Zhu 2021-03-01
66ff99f Donghe-Zhu 2021-03-01
ac9bb7a Donghe-Zhu 2021-02-28
efdc047 Donghe-Zhu 2021-02-28
e9a7418 Donghe-Zhu 2021-02-28
e152917 Donghe-Zhu 2021-02-28
287123c Donghe-Zhu 2021-02-27
54d5b5b Donghe-Zhu 2021-02-27
330f064 Donghe-Zhu 2021-02-27
adbc9bc Donghe-Zhu 2021-02-27
5937141 Donghe-Zhu 2021-02-27
4414bbf Donghe-Zhu 2021-02-27
a265efb Donghe-Zhu 2021-02-27
19edd1e Donghe-Zhu 2021-02-27
f20483f Donghe-Zhu 2021-02-26
6a2c7b3 Donghe-Zhu 2021-02-25
354c224 Donghe-Zhu 2021-02-24
1a0a88a Donghe-Zhu 2021-02-24
57f701e Donghe-Zhu 2021-02-24
06f3149 Donghe-Zhu 2021-02-16
401eab3 Donghe-Zhu 2021-02-15
e3bba84 Donghe-Zhu 2021-02-15
5dce4b1 Donghe-Zhu 2021-02-15
4469a0c Donghe-Zhu 2021-02-13
5ae6a69 Donghe-Zhu 2021-02-10
05385dc Donghe-Zhu 2021-02-10
f791ae4 Donghe-Zhu 2021-02-09
f71ae34 Donghe-Zhu 2021-02-09
c011832 Donghe-Zhu 2021-02-09
a145fa7 Donghe-Zhu 2021-02-09
c344e42 Donghe-Zhu 2021-02-08
2f095d7 Donghe-Zhu 2021-02-07
1fad5f1 Donghe-Zhu 2021-02-07
ca03c39 Donghe-Zhu 2021-02-07
e2ffc14 Donghe-Zhu 2021-02-05
cd7c52c Donghe-Zhu 2021-02-04
bcf84f4 Donghe-Zhu 2021-02-02
a518739 Donghe-Zhu 2021-02-01
61666de Donghe-Zhu 2021-01-31
865b582 Donghe-Zhu 2021-01-31
3e68089 Donghe-Zhu 2021-01-31
ecf335c Donghe-Zhu 2021-01-31
a618965 Donghe-Zhu 2021-01-31
59e006e Donghe-Zhu 2021-01-31
a1c8f87 Donghe-Zhu 2021-01-31
ae5c18f Donghe-Zhu 2021-01-31
b50fe52 Donghe-Zhu 2021-01-31
ac99ae5 jens-daniel-mueller 2021-01-29
b5bdcaf Donghe-Zhu 2021-01-29
442010d Donghe-Zhu 2021-01-29
372adf5 Donghe-Zhu 2021-01-29
af8788e Donghe-Zhu 2021-01-29
21c91c9 Donghe-Zhu 2021-01-29
eded038 Donghe-Zhu 2021-01-29
541d4dd Donghe-Zhu 2021-01-29
6a75576 Donghe-Zhu 2021-01-28
16fba40 Donghe-Zhu 2021-01-28
12bc567 Donghe-Zhu 2021-01-27
ceed31b Donghe-Zhu 2021-01-27
342402d Donghe-Zhu 2021-01-27
5bad5c2 Donghe-Zhu 2021-01-27
61efb56 Donghe-Zhu 2021-01-25
48f638e Donghe-Zhu 2021-01-25
c1cec47 Donghe-Zhu 2021-01-25
05ffb0c Donghe-Zhu 2021-01-25
8b97165 Donghe-Zhu 2021-01-25
c569946 Donghe-Zhu 2021-01-24
a2f0d56 Donghe-Zhu 2021-01-23
28509fc Donghe-Zhu 2021-01-23
4c28e4a Donghe-Zhu 2021-01-22
24cc264 jens-daniel-mueller 2021-01-22
7891955 Donghe-Zhu 2021-01-21
d4cf1cb Donghe-Zhu 2021-01-21
1f3e5b6 jens-daniel-mueller 2021-01-20
0e7bdf1 jens-daniel-mueller 2021-01-15
4571843 jens-daniel-mueller 2021-01-14
b3564aa jens-daniel-mueller 2021-01-14
8d032c3 jens-daniel-mueller 2021-01-14
17dee1d jens-daniel-mueller 2021-01-13
7cdea0c jens-daniel-mueller 2021-01-06
fa85b93 jens-daniel-mueller 2021-01-06
e5cb81a Donghe-Zhu 2021-01-05
a499f10 Donghe-Zhu 2021-01-05
fb8a752 Donghe-Zhu 2020-12-23
8fae0b2 Donghe-Zhu 2020-12-21
c8b76b3 jens-daniel-mueller 2020-12-19

sessionInfo()
R version 4.0.3 (2020-10-10)
Platform: x86_64-pc-linux-gnu (64-bit)
Running under: openSUSE Leap 15.2

Matrix products: default
BLAS:   /usr/local/R-4.0.3/lib64/R/lib/libRblas.so
LAPACK: /usr/local/R-4.0.3/lib64/R/lib/libRlapack.so

locale:
 [1] LC_CTYPE=en_US.UTF-8       LC_NUMERIC=C              
 [3] LC_TIME=en_US.UTF-8        LC_COLLATE=en_US.UTF-8    
 [5] LC_MONETARY=en_US.UTF-8    LC_MESSAGES=en_US.UTF-8   
 [7] LC_PAPER=en_US.UTF-8       LC_NAME=C                 
 [9] LC_ADDRESS=C               LC_TELEPHONE=C            
[11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C       

attached base packages:
[1] stats     graphics  grDevices utils     datasets  methods   base     

other attached packages:
 [1] gt_0.2.2         corrr_0.4.3      broom_0.7.5      kableExtra_1.3.1
 [5] knitr_1.30       olsrr_0.5.3      GGally_2.0.0     lubridate_1.7.9 
 [9] metR_0.9.0       scico_1.2.0      patchwork_1.1.1  collapse_1.5.0  
[13] forcats_0.5.0    stringr_1.4.0    dplyr_1.0.2      purrr_0.3.4     
[17] readr_1.4.0      tidyr_1.1.2      tibble_3.0.4     ggplot2_3.3.3   
[21] tidyverse_1.3.0  workflowr_1.6.2 

loaded via a namespace (and not attached):
 [1] fs_1.5.0                 webshot_0.5.2            RColorBrewer_1.1-2      
 [4] httr_1.4.2               rprojroot_2.0.2          tools_4.0.3             
 [7] backports_1.1.10         R6_2.5.0                 nortest_1.0-4           
[10] DBI_1.1.0                colorspace_2.0-0         withr_2.3.0             
[13] gridExtra_2.3            tidyselect_1.1.0         curl_4.3                
[16] compiler_4.0.3           git2r_0.27.1             cli_2.2.0               
[19] rvest_0.3.6              xml2_1.3.2               sass_0.2.0              
[22] labeling_0.4.2           scales_1.1.1             checkmate_2.0.0         
[25] goftest_1.2-2            digest_0.6.27            foreign_0.8-80          
[28] rmarkdown_2.5            rio_0.5.16               pkgconfig_2.0.3         
[31] htmltools_0.5.0          highr_0.8                dbplyr_1.4.4            
[34] rlang_0.4.10             readxl_1.3.1             rstudioapi_0.13         
[37] farver_2.0.3             generics_0.1.0           jsonlite_1.7.2          
[40] zip_2.1.1                car_3.0-10               magrittr_2.0.1          
[43] Matrix_1.2-18            Rcpp_1.0.5               munsell_0.5.0           
[46] fansi_0.4.1              abind_1.4-5              lifecycle_0.2.0         
[49] stringi_1.5.3            whisker_0.4              yaml_2.2.1              
[52] carData_3.0-4            plyr_1.8.6               grid_4.0.3              
[55] blob_1.2.1               parallel_4.0.3           promises_1.1.1          
[58] crayon_1.3.4             lattice_0.20-41          haven_2.3.1             
[61] hms_0.5.3                pillar_1.4.7             reprex_0.3.0            
[64] glue_1.4.2               evaluate_0.14            RcppArmadillo_0.10.1.2.2
[67] data.table_1.13.6        modelr_0.1.8             vctrs_0.3.6             
[70] httpuv_1.5.4             cellranger_1.1.0         gtable_0.3.0            
[73] reshape_0.8.8            assertthat_0.2.1         xfun_0.20               
[76] openxlsx_4.2.3           RcppEigen_0.3.3.9.1      later_1.1.0.1           
[79] viridisLite_0.3.0        ellipsis_0.3.1           here_1.0.1